Atmospheric chemistry research in Monsoon Asia and Oceania: Current status and future prospects

2020 ◽  
Author(s):  
Hiroshi Tanimoto ◽  
Nguyen Thi Kim Oanh ◽  
Manish Naja ◽  
Shih-Chun Candice Lung ◽  
Mohd Talib Latif ◽  
...  

We aimed to foster the community of atmospheric scientists in the Monsoon Asia and Oceania (MANGO) region to enhance communication among scientists in different countries and strengthen collaborations with the international community, with emphasis on air quality in Asia as it impacts human health and climate change. For this purpose, we have established a regional group, the International Global Atmospheric Chemistry–MANGO (IGAC–MANGO), under the IGAC project sponsored by Future Earth and the international Commission on Atmospheric Chemistry and Global Pollution. Through a series of committee meetings, scientific workshops, and training courses for students and early-career scientists, we analysed scientific activities in each country and identified research priorities in the MANGO region, significantly contributing to enhancing the capability and capacity of air quality research as well as fostering the next generation of scientists in the MANGO region.

2020 ◽  
Author(s):  
Benjamin N. Murphy ◽  
Christopher G. Nolte ◽  
Fahim Sidi ◽  
Jesse O. Bash ◽  
K. Wyat Appel ◽  
...  

Abstract. Air quality modeling for research and regulatory applications often involves executing many emissions sensitivity cases to quantify impacts of hypothetical scenarios, estimate source contributions or quantify uncertainties. Despite the prevalence of this task, conventional approaches for perturbing emissions in chemical transport models like the Community Multiscale Air Quality (CMAQ) model require extensive offline creation and finalization of alternative emissions input files. This workflow tends to be time-consuming, error-prone, inconsistent among model users and difficult to document while consuming increased computer storage space. The Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) module, a component of CMAQv5.3 and beyond, addresses these limitations by performing these modifications online during the air quality simulation. Further, the model contains an Emission Control Interface which allows users to prescribe both simple and highly complex emissions scaling operations with control over individual or multiple chemical species, emissions sources, and spatial areas of interest. DESID further enhances the transparency of its operations with extensive error-checking and optional gridded output of processed emission fields. These new features are of high value to many air quality applications including routine perturbation studies, atmospheric chemistry research, and coupling with external models (e.g. energy system models, reduced-form models).


2015 ◽  
Vol 8 (2) ◽  
pp. 603-647 ◽  
Author(s):  
E. D. Sofen ◽  
D. Bowdalo ◽  
M. J. Evans ◽  
F. Apadula ◽  
P. Bonasoni ◽  
...  

Abstract. The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971–2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8), SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.


2016 ◽  
Vol 8 (1) ◽  
pp. 41-59 ◽  
Author(s):  
E. D. Sofen ◽  
D. Bowdalo ◽  
M. J. Evans ◽  
F. Apadula ◽  
P. Bonasoni ◽  
...  

Abstract. The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971–2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.


2021 ◽  
Vol 14 (6) ◽  
pp. 3407-3420
Author(s):  
Benjamin N. Murphy ◽  
Christopher G. Nolte ◽  
Fahim Sidi ◽  
Jesse O. Bash ◽  
K. Wyat Appel ◽  
...  

Abstract. Air quality modeling for research and regulatory applications often involves executing many emissions sensitivity cases to quantify impacts of hypothetical scenarios, estimate source contributions, or quantify uncertainties. Despite the prevalence of this task, conventional approaches for perturbing emissions in chemical transport models like the Community Multiscale Air Quality (CMAQ) model require extensive offline creation and finalization of alternative emissions input files. This workflow is often time-consuming, error-prone, inconsistent among model users, difficult to document, and dependent on increased hard disk resources. The Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) module, a component of CMAQv5.3 and beyond, addresses these limitations by performing these modifications online during the air quality simulation. Further, the model contains an Emission Control Interface which allows users to prescribe both simple and highly complex emissions scaling operations with control over individual or multiple chemical species, emissions sources, and spatial areas of interest. DESID further enhances the transparency of its operations with extensive error-checking and optional gridded output of processed emission fields. These new features are of high value to many air quality applications including routine perturbation studies, atmospheric chemistry research, and coupling with external models (e.g., energy system models, reduced-form models).


2017 ◽  
Vol 98 (11) ◽  
pp. 2285-2292 ◽  
Author(s):  
Alexander Baklanov ◽  
Dominik Brunner ◽  
Gregory Carmichael ◽  
Johannes Flemming ◽  
Saulo Freitas ◽  
...  

Abstract Online coupled meteorology–atmospheric chemistry models have greatly evolved in recent years. Although mainly developed by the air quality modeling community, these integrated models are also of interest for numerical weather prediction and climate modeling, as they can consider both the effects of meteorology on air quality and the potentially important effects of atmospheric composition on weather. This paper summarizes the main conclusions from the “Symposium on Coupled Chemistry–Meteorology/Climate Modelling: Status and Relevance for Numerical Weather Prediction, Air Quality and Climate Research,” which was initiated by the European COST Action ES1004 “European Framework for Online Integrated Air Quality and Meteorology Modelling (EuMetChem).” It offers a brief review of the current status of online coupled meteorology and atmospheric chemistry modeling and a survey of processes relevant to the interactions between atmospheric physics, dynamics, and composition. In addition, it highlights scientific issues and emerging challenges that require proper consideration to improve the reliability and usability of these models for three main application areas: air quality, meteorology (including weather prediction), and climate modeling. It presents a synthesis of scientific progress in the form of answers to nine key questions, and provides recommendations for future research directions and priorities in the development, application, and evaluation of online coupled models.


2014 ◽  
Vol 14 (1) ◽  
pp. 317-398 ◽  
Author(s):  
A. Baklanov ◽  
K. Schlünzen ◽  
P. Suppan ◽  
J. Baldasano ◽  
D. Brunner ◽  
...  

Abstract. Online coupled mesoscale meteorology atmospheric chemistry models have undergone a rapid evolution in recent years. Although mainly developed by the air quality modelling community, these models are also of interest for numerical weather prediction and regional climate modelling as they can consider not only the effects of meteorology on air quality, but also the potentially important effects of atmospheric composition on weather. Two ways of online coupling can be distinguished: online integrated and online access coupling. Online integrated models simulate meteorology and chemistry over the same grid in one model using one main time step for integration. Online access models use independent meteorology and chemistry modules that might even have different grids, but exchange meteorology and chemistry data on a regular and frequent basis. This article offers a comprehensive review of the current research status of online coupled meteorology and atmospheric chemistry modelling within Europe. Eighteen regional online coupled models developed or being used in Europe are described and compared. Topics discussed include a survey of processes relevant to the interactions between atmospheric physics, dynamics and composition; a brief overview of existing online mesoscale models and European model developments; an analysis on how feedback processes are treated in these models; numerical issues associated with coupled models; and several case studies and model performance evaluation methods. Finally, this article highlights selected scientific issues and emerging challenges that require proper consideration to improve the reliability and usability of these models for the three scientific communities: air quality, numerical meteorology modelling (including weather prediction) and climate modelling. This review will be of particular interest to model developers and users in all three fields as it presents a synthesis of scientific progress and provides recommendations for future research directions and priorities in the development, application and evaluation of online coupled models.


2013 ◽  
Vol 13 (5) ◽  
pp. 12541-12724 ◽  
Author(s):  
A. Baklanov ◽  
K. H. Schluenzen ◽  
P. Suppan ◽  
J. Baldasano ◽  
D. Brunner ◽  
...  

Abstract. The simulation of the coupled evolution of atmospheric dynamics, pollutant transport, chemical reactions and atmospheric composition is one of the most challenging tasks in environmental modelling, climate change studies, and weather forecasting for the next decades as they all involve strongly integrated processes. Weather strongly influences air quality (AQ) and atmospheric transport of hazardous materials, while atmospheric composition can influence both weather and climate by directly modifying the atmospheric radiation budget or indirectly affecting cloud formation. Until recently, however, due to the scientific complexities and lack of computational power, atmospheric chemistry and weather forecasting have developed as separate disciplines, leading to the development of separate modelling systems that are only loosely coupled. The continuous increase in computer power has now reached a stage that enables us to perform online coupling of regional meteorological models with atmospheric chemical transport models. The focus on integrated systems is timely, since recent research has shown that meteorology and chemistry feedbacks are important in the context of many research areas and applications, including numerical weather prediction (NWP), AQ forecasting as well as climate and Earth system modelling. However, the relative importance of online integration and its priorities, requirements and levels of detail necessary for representing different processes and feedbacks can greatly vary for these related communities: (i) NWP, (ii) AQ forecasting and assessments, (iii) climate and earth system modelling. Additional applications are likely to benefit from online modelling, e.g.: simulation of volcanic ash or forest fire plumes, pollen warnings, dust storms, oil/gas fires, geo-engineering tests involving changes in the radiation balance. The COST Action ES1004 – European framework for online integrated air quality and meteorology modelling (EuMetChem) – aims at paving the way towards a new generation of online integrated atmospheric chemical transport and meteorology modelling with two-way interactions between different atmospheric processes including dynamics, chemistry, clouds, radiation, boundary layer and emissions. As its first task, we summarise the current status of European modelling practices and experience with online coupled modelling of meteorology with atmospheric chemistry including feedback mechanisms and attempt reviewing the various issues connected to the different modules of such online coupled models but also providing recommendations for coping with them for the benefit of the modelling community at large.


2019 ◽  
Vol 26 (30) ◽  
pp. 5711-5726 ◽  
Author(s):  
Naveed Ahmed Khan ◽  
Ayaz Anwar ◽  
Ruqaiyyah Siddiqui

Background:First discovered in the early 1970s, Acanthamoeba keratitis has remained a major eye infection and presents a significant threat to the public health, especially in developing countries. The aim is to present a timely review of our current understanding of the advances made in this field in a comprehensible manner and includes novel concepts and provides clear directions for immediate research priorities.Methods:We undertook a search of bibliographic databases for peer-reviewed research literature and also summarized our published results in this field.Results:The present review focuses on novel diagnostic and therapeutic strategies in details which can provide access to management and treatment of Acanthamoeba keratitis. This coupled with the recently available genome sequence information together with high throughput genomics technology and innovative approaches should stimulate interest in the rational design of preventative and therapeutic measures. Current treatment of Acanthamoeba keratitis is problematic and often leads to infection recurrence. Better understanding of diagnosis, pathogenesis, pathophysiology and therapeutic regimens, would lead to novel strategies in treatment and prophylaxis.


2021 ◽  
Vol 139 (1) ◽  
pp. 32-58
Author(s):  
Orietta Da Rold

Abstract In this essay, I offer a brief history of manuscript cataloguing and some observations on the innovations this practice introduced especially in the digital form. This history reveals that as the cataloguing of medieval manuscripts developed over time, so did the research needs it served. What was often considered traditional cataloguing practices had to be mediated to accommodate new scholarly advance, posing interesting questions, for example, on what new technologies can bring to this discussion. In the digital age, in particular, how do digital catalogues interact with their analogue counterparts? What skills and training are required of scholars interacting with this new technology? To this end, I will consider the importance of the digital environment to enable a more flexible approach to cataloguing. I will also discuss new insights into digital projects, especially the experience accrued by the The Production and Use of English Manuscripts 1060 to 1220 Project, and then propose that in the future cataloguing should be adaptable and shareable, and make full use of the different approaches to manuscripts generated by collaboration between scholars and librarians or the work of postgraduate students and early career researchers.


2014 ◽  
Vol 5 (2) ◽  
pp. 4-22
Author(s):  
Leonel Morgado ◽  
João Varajão ◽  
Caroline Dominguez ◽  
Irene Oliveira ◽  
Fernanda Sousa

AbstractBackground: Given the limited available time of in-service professionals, the balance between the perceived importance of the course content and training needs is essential for the acceptance and attractiveness of training courses aimed at them. Objectives: The goal of the paper is to contribute to the development of entrepreneurship and business training programs for European SME managers. Methods/Approach: In six European countries a survey focusing on SME managers’ views on the importance of individual items from a list of potential course content items, and their training needs was carried out, and followed by an analysis using exploratory and multivariate techniques. It was aimed at identifying homogeneous groups of managers with common training needs and perceptions of content importance. Results: Homogeneous groups of managers who assign the same importance to certain competences and who have common training needs are identified. Conclusions: Results of our research could help training institutions to develop courses aimed at SME managers. The balancing approach proved to be an interesting method of combining conflicting requirements for the training course curriculum development.


Sign in / Sign up

Export Citation Format

Share Document