scholarly journals Enhancing Strength of Bamboo using GFRP and PU

Author(s):  
Teoh Hui Xin ◽  
◽  
Norazman Mohamad Nor ◽  
Mohammed Alias Yusof ◽  
◽  
...  

Bamboo is an eco-friendly material, it can be used in various applications such as bamboo housing, bamboo bridges, bamboo scaffolding, ply bamboo, bamboo furniture, and for defence applications. It has various advantages to be used as structural material. However, it has weaknesses such as crushing failure under extreme loading that need to be addressed. The objective of this research is to enhance bamboo bearing and bending capacity using various stiffeners. Experimental work done is to investigate the compressive strength, bending strength, bearing strength and tensile strength of raw local bamboo. Further analysis includes bending and bearing strength of raw bamboo and strengthen bamboo using Glass Fiber Reinforced Polymer (GFRP) and Polyurethane (PU) Foams. From the test done, the bearing strength of raw bamboo Semantan with node is between 2.61 MPa to 3.14 MPa and for raw bamboo Semantan without node is between 0.28 MPa to 0.82 MPa, average bending strength of raw bamboo Semantan is 59 MPa. For strengthen bamboo with 4 layers of Glass Fiber Reinforced Polymer, the bearing strength without node is between 1.59 MPa to 2.38 MPa, and the average bending strength is 62 MPa which is about 5% higher than raw bamboo.

Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Gabriel Mansour ◽  
Panagiotis Kyratsis ◽  
Apostolos Korlos ◽  
Dimitrios Tzetzis

There are numerous engineering applications where Glass Fiber Reinforced Polymer (GFRP) composite tubes are utilized, such as desalination plants, power transmission systems, and paper mill, as well as marine, industries. Some type of machining is required for those various applications either for joining or fitting procedures. Machining of GFRP has certain difficulties that may damage the tube itself because of fiber delamination and pull out, as well as matrix deboning. Additionally, short machining tool life may be encountered while the formation of powder like chips maybe relatively hazardous. The present paper investigates the effect of process parameters for surface roughness of glass fiber-reinforced polymer composite pipes manufactured using the filament winding process. Experiments were conducted based on the high-speed turning Computer Numerical Control (CNC) machine using Poly-Crystalline Diamond (PCD) tool. The process parameters considered were cutting speed, feed, and depth of cut. Mathematical models for the surface roughness were developed based on the experimental results, and Analysis of Variance (ANOVA) has been performed with a confidence level of 95% for validation of the models.


Author(s):  
Priyadarsini Morampudi ◽  
Kiran Kumar Namala ◽  
Yeshwanth Kumar Gajjela ◽  
Majjiga Barath ◽  
Ganaparthy Prudhvi

2016 ◽  
Vol 857 ◽  
pp. 421-425
Author(s):  
Saif M. Thabet ◽  
S.A. Osman

This paper presents an investigation into the flexural behaviour of reinforced concrete beam with opening reinforced with two different materials i.e., steel and Glass Fiber Reinforced Polymer (GFRP). Comparison study between the two different materials were carried out and presented in this study through non-linear Finite Element Method (FEM) using the commercial ABAQUS 6.10 software package. The performance of the opening beam reinforced with GFRP is influenced by several key parameters. Simulation analyses were carried out to determine the behavior of beam with opening subjected to monotonic loading. The main parameters considered in this study are size of opening and reinforcement diameter. The results show that GFRP give 23%-29% more ductility than steel reinforcement. The result also shows when the size of opening change from 200mm to 150mm or from 150mm to 100mm the ultimate load capacity increase by 15%. In general, good agreement between the Finite Element (FE) simulation and the available experimental result has been obtained.


2017 ◽  
Vol 8 (2) ◽  
pp. 304-320 ◽  
Author(s):  
Mohamed MA Abdel-Kader ◽  
Ahmed Fouda

In this article, the response of 12 plain concrete specimens to an impact of hard projectiles was examined in an experimental study. The tests were planned with an aim to observe the influence of using glass fiber reinforced polymer sheets to strengthen plain concrete panels on the performance of concrete under this type of loading. The main findings show that strengthening plain concrete panels with glass fiber reinforced polymer sheets showed satisfactory performance under the impact load; the glass fiber reinforced polymer sheets can be used for strengthening or upgrading concrete structures to improve their resistance against impact. Also, the location of the glass fiber reinforced polymer sheet affects the front and rear face craters.


Sign in / Sign up

Export Citation Format

Share Document