scholarly journals Homoeologous chromosome pairing at metaphase I of meiosis in Hordeum vulgare L. × H. bulbosum L. triploid hybrids (HvHbHb)

2020 ◽  
Vol 3 (2) ◽  
pp. 6-15
Author(s):  
G. I. Pendinen ◽  
M. Scholz

Background. One of the ways to use the genetic potential of bulbous barley, which is characterized by a number of valuable traits, is interspecific hybridization. In crosses of H. vulgare (2x) × H. bulbosum (2x) and H. vulgare (4x) × H. bulbosum (4x) with a genome ratio of 1Hv: 1Hb in a hybrid embryo, elimination of bulbous barley chromosomes is observed in many cases, and the intensity of the process and the result of the crossing depend on the genotypes of the parental forms. This limits the possibility of including a significant variety of parental forms in crosses. Сrossing of diploid forms of H. vulgare with tetraploid accessions of H. bulbosum (4x) results in the formation of triploid hybrids (HvHbHb) with stable chromosomal composition in pollen mother cells (PMCs) at metaphase I (MI) of meiosis. These triploid hybrids can serve as a basis for obtaining series of introgressive lines of cultivated barley. One of the tasks of this type of work is to estimate the involvement of various chromosomes and their arms in homoeologous associations. The aim of this work was to study the possibility of homoeologous pairing of chromosomes of parental species at MI of meiosis in triploid hybrids using GISH and FISH with chromosome-specific markers, as well as to register the participation of individual arms of the cultivated barley chromosomes in homoeologous associations with the chromosomes of bulbous barley in triploid hybrids (HvHbHb).Materials and methods. Seven triploid hybrids of H. vulgare × H.bulbosum (HvHbHb) obtained in four combinations of crosses with the participation of three diploid cultivars of cultivated barley and two tetraploid accession of bulbous barley were used in this study. The features of homoeologous pairing of chromosomes at MI were studied using the method of fluorescent in situ hybridization (GISH and FISH) with chromosome-specific markers.Results All the studied hybrid plants are characterized by a stable chromosomal composition in PMCs at the MI stage of meiosis. Meiotic configurations formed by homoeologous chromosomes of the parental species, ranging from 0.87 to 1.40 on average per cell, were identified in all the studied plants. Among them, vbb trivalents prevailed. Analysis of chromosome pairing at MI in triploid hybrids revealed the participation of all chromosome arms of H. vulgare in homoeologous Hv-Hb associations, except for the short arm of chromosome 1H. In all the studied triploid hybrids, there is a tendency for a higher frequency of involvement of the long arms of chromosomes in the formation of homoeologous associations; this feature is most clearly manifested in case of chromosome 5H.Conclusions Intergenomic associations with the participation of all arms of H. vulgare chromosomes, except for the short arm of chromosome 1H, were revealed at MI in H. vulgare × H. bulbosum triploid hybrids (HvHbHb). Chromosome 5H, as well as any other cultivated barley chromosome, is characterized by a higher involvement of its long arm in homoeologous associations Hv-Hb, as compared to the short arm.

Genome ◽  
1993 ◽  
Vol 36 (1) ◽  
pp. 147-151 ◽  
Author(s):  
J. Torabinejad ◽  
R. J. Mueller

Eight intergeneric hybrid plants were obtained between Elymus scabrus (2n = 6x = 42, SSYY??) and Australopyrum pectinatum ssp. retrofractum (2n = 2x = 14, WW). The hybrids were vegetatively vigorous but reproductively sterile. Examination of pollen mother cells at metaphase I revealed an average of 16.63 I, 5.29 II, 0.19 III, and 0.05 IV per cell for the eight hybrids. The average chiasma frequency of 6.77 per cell in the above hybrids strongly supports the presence of a W genome from A. pectinatum ssp. retrofractum in E. scabrus. Meiotic pairing data of some other interspecific hybrids suggest the existence of the SY genomes in E. scabrus. Therefore, the genome constitution of E. scabrus should be written as SSYYWW. Two other hybrid plants resulted from Elymus yezoensis (2n = 4x = 28, SSYY) crosses with A. pectinatum ssp. pectinatum (2n = 2x = 14, WW). Both were weak and sterile. An average of 0.45 bivalents per cell were observed at metaphase I. This clearly indicates a lack of pairing between W genome of Australopyrum and S or Y genomes of E. yezoensis. In addition, six hybrid plants of E. scabrus with Psathyrostachys juncea (2n = 2x = 14, NN) and one with Thinopyrum bessarabicum (2n = 2x = 14, JJ) were also obtained. The average bivalents per cell formed in both combinations were 2.84 and 0.70, respectively. The results of the latter two combinations showed that there is no N or J genome in E. scabrus.Key words: wide hybridization, chromosome pairing, genome analysis, Australopyrum, Elymus.


1984 ◽  
Vol 26 (5) ◽  
pp. 519-522 ◽  
Author(s):  
Patrick E. McGuire

Mean chromosome pairing of 5.14I + 1.28II (rod) + 3.86II (ring) + 1.47III + 0.11IV (open) + 0.11V was observed in pollen mother cells at metaphase I in the triploid hybrid Elytrigia scirpea (K. Presl) Holub, 2n = 4x = 28 × E. bessarabica (Savul. et Rayss) Dubrovik, 2n = 4x = 14. Mean chromosome pairing of 3.71I + 2.29II (rod) + 1.82II (ring) + 2.64III + 0.29IV (open) was observed in the triploid hybrid E. curvifolia (Lange) Holub, 2n = 4x = 28 × E. bessarabica. Mean chromosome pairing of 3.00I + 0.93II (rod) + 1.57II (ring) + 1.36III + 1.79IV (open) + 1.I4IV (closed) + 0.79V was observed in the tetraploid hybrid E. junceiformis Löve et Löve, 2n = 4x = 28 × E. curvifolia. The first hybrid provides the first evidence by genome analysis that E. bessarabica possesses a genome (designated Eb) which is closely related to the genomes of E. scirpea (ES and ESC) and hence to the E genome of E. elongata (Host) Nevski, 2n = 2x = 14. The second and third hybrids provide the first evidence that the two genomes of E. curvifolia (designated EC and ECU) are related to the Eb genome of E. bessarabica and thus to the E genome of E. elongata.Key words: Elytrigia, homoeology, Triticum, phylogeny, triploid, tetraploid.


1982 ◽  
Vol 24 (6) ◽  
pp. 715-719 ◽  
Author(s):  
E. R. Sears

An X-ray-induced mutation in common wheat (Triticum aestivum L.), designated ph2, conditions an intermediate level of homoeologous chromosome pairing in hybrids with Triticum kotschyi var. variabilis. The number of chromosomes paired averaged 9.2 per sporocyte, compared with 2.0 in the control and 27.9 in the same hybrid involving ph1b, an apparent deficiency for Ph1 obtained in the same mutation experiment. The ph2 mutation is located on chromosome 3D and is believed to be a deficiency for a terminal segment of the short arm that includes the locus of Ph2, a minor suppressor of homoeologous pairing. Although no pairing of the ph2-carrying chromosome with telosome 3DS was observed, the mutation is clearly not a deficiency for the entire arm. It has little effect on pairing in wheat itself. Male transmission of the mutation is approximately normal, and fertility, while reduced, is sufficient for easy maintenance of the homozygous line.


1977 ◽  
Vol 19 (3) ◽  
pp. 549-556 ◽  
Author(s):  
J. Dvořák

The number of chiasmata per cell at metaphase I was scored in eight haploid plants of Triticum aestivum L. emend. Thell. cv. 'Chinese Spring' and 100 hybrid plants of Chinese Spring × Secale cereale L. Mean chiasma frequency per cell ranged from 0.00 to 3.59 in the hybrids and from 0.17 to 0.35 in the haploids. Since the same wheat genotype was present in both the haploids and hybrids, it is concluded that some of the rye genotypes promoted homoeologous chromosome pairing. The absence of distinct segregation classes among the hybrids suggests that these genes constitute a polygenic system.


1979 ◽  
Vol 21 (1) ◽  
pp. 65-71 ◽  
Author(s):  
K. C. Armstrong

Homoeology between the A and B genomes of allotetraploid (2n = 4x = 28) AiAiBiBi and autoallooctoploid (2n = 8x = 56) AIAIAIAIBIBIBIBI cytotypes of B. inermis Leyss. was studied in a tetraploid F1 hybrid (AeAeAiBi) from 4x B. erectus × 4x B. inermis and in a haplo-triploid (AIeAIeBI) which occurred spontaneously in the F2 from open-pollination among plants of the hexaploid F1 hybrid (AeAeAIAIBIBI) from 4x B. erectus × 8x B. inermis. Chromosome pairing at metaphase I in both the tetraploid (AeAeAiBi) and haplo-triploid (AIeAIeBI) indicated that for each A genome chromosome there was a corresponding B genome homoeologue. There was no convincing evidence of gross structural differences between the two homoeologous genomes. The frequency of trivalent formation in the haplo-triploid was approximately one-half that found in two pentaploids (2n = 5x = 35) AIeAIeAIBIBI. This indicates that the pairing affinity between the A and B genomes is one-half that between homologues as expressed by trivalent formation in triploids of the type AAB and AAA. Homoeologous chromosome pairing (A with B) may be controlled by a gene which is hemizygous ineffective.


1985 ◽  
Vol 75 (1) ◽  
pp. 85-92
Author(s):  
J.S. Heslop-Harrison ◽  
M.D. Bennett

Complete reconstructions of all the bivalents were made from electron micrographs of serial sections through six pollen mother cells at metaphase I of meiosis in Triticum aestivum (hexaploid bread wheat). At least two of these metaphases contained interlocked pairs of bivalents. In one, two ring bivalents were interlocked, while in another a rod bivalent ran through the centre of a ring bivalent. Two other groups of bivalents were too closely appressed to allow separation into individual bivalents and may have contained interlocks. Meiosis in other anthers of the same plants examined by light microscopy was considered normal. The frequency of interlocking found was much higher than reported from light-microscope spreads. Not all interlocks in metaphase I cells need adversely affect meiosis, but knowledge of their regularity and form may facilitate understanding the processes of chromosome pairing.


1971 ◽  
Vol 18 (3) ◽  
pp. 329-339 ◽  
Author(s):  
A. M. Wall ◽  
Ralph Riley ◽  
M. D. Gale

SUMMARYAn investigation was made of the chromosomal position of the mutant locus, in Mutant 10/13 of Triticum aestivum (2n = 6x = 42), affecting homoeologous chromosome pairing at meiosis. In hybrids between Mutant 10/13 and rye (Secale cereale 2n = 14), homoeologous chromosomes frequently pair at meiosis although normally, in wheat-rye hybrids, this happens infrequently.The association of the mutant condition with chromosome 5B was determined by (i) the absence of segregation in hybrids obtained when Mutant 10/13 monosomic 5B was pollinated by rye; (ii) the occurrence of trisomie segregation for pairing behaviour in 28-chromosome wheat-rye hybrids, obtained from SB trisomie wheat parents with two 5B chromosome from a non-mutant and one from a mutant parent; (iii) the absence of segregation for pairing behaviour in the 29-chromosome wheat-rye hybrids obtained from the same trisomie wheat parents.The alternative pairing behaviours segregated independently of the centromere when wheat plants that were simultaneously heteromorphic, 5BL telocentric/5B complete, and heterozygous for the Mutant 10/13 state, were pollinated by rye. The alternative chromosome-pairing patterns segregated to give a ratio not different from 1:1, so that the association of homoeologous pairing with Mutant 10/13 probably derived from the occurrence of mutation at a single locus on 5BL. In the disomic heteromorphic state, 5BL was 91 map units in length.Trisomie wheats with two complete 5B chromosomes and one 5BL telocentric, that were also heterozygous for the Mutant 10/13 condition, were pollinated by rye. Among the resulting 28-chromosome hybrids there was a 2:1 segregation of hybrids with low pairing: high (homoeologous) pairing and also of hybrids with complete 5B: telocentric 5BL. However, there was no evidence of linkage in this trisomie segregation. All the 29-chromosome hybrids from this cross had low pairing and it could be concluded that the single mutant allele, in Mutant 10/13, was recessive. In the trisomie condition, relative to a simplex situation, 5BL was 33·05 map units in length.The critical locus on 5BL was designated Pairing homoeologous. The normal dominant allele was symbolized Ph and the recessive allele, in Mutant 10/13, ph.The prevention of homoeologous pairing by the activity of a single locus makes the evolution of the regular meiotic behaviour of T. aestivum more readily comprehensible.


1972 ◽  
Vol 14 (1) ◽  
pp. 39-42 ◽  
Author(s):  
C. J. Driscoll

Greater genetic complexity has been revealed for the control of bivalency in hexaploid wheat. A suppressor of homoeologous pairing has been detected on chromosome 3A. Thus, there are two suppressors in homoeologous group 3. The 3A suppressor may be homoeoallelic to either the suppressor on 3Dβ or the promoter, detected in this study, on 3Dα. Individually these two suppressors are less effective than the suppressor on the long arm of chromosome 5B; however, their combined effect is yet to be studied. This greater complexity suggests that hexaploid wheat may not be too dissimilar to other polyploids as regards genetic control of bivalency. The mode of action of these suppressors appears to be consistent with a heteromultimeric hypothesis.


Genome ◽  
2001 ◽  
Vol 44 (4) ◽  
pp. 738-741 ◽  
Author(s):  
B F Cheng ◽  
G Séguin-Swartz ◽  
D J Somers ◽  
G Rakow

The low glucosinolate Brassica juncea breeding line 1058 was derived from a BC1F3 plant of an interspecific cross between high glucosinolate Indian B. juncea (genome AABB, 2n = 36) line 60143 and B. rapa (genome AA, 2n = 20) canola strain CZY. Line 60143 had 2n = 36 chromosomes (18 bivalents at metaphase I) and strain CZY had 2n = 20 chromosomes (10 bivalents). Line 1058 was nullisomic, with 2n - 2 = 34 chromosomes, with 17 bivalents formed at metaphase I and an even chromosomal segregation of 17:17 at anaphase I. In F1 hybrid plants of the cross 1058 × CZY, 98.3% of the pollen mother cells had 10 bivalents and seven univalents. This is evidence that plants of line 1058 are nullisomic, missing one pair of B-genome chromosomes.Key words: low glucosinolate mustard, meiotic behaviour, cytogenetics.


Genome ◽  
2011 ◽  
Vol 54 (12) ◽  
pp. 959-964 ◽  
Author(s):  
Ming Hao ◽  
Jiangtao Luo ◽  
Min Yang ◽  
Lianquan Zhang ◽  
Zehong Yan ◽  
...  

The ph-like genes in the Chinese common wheat landrace Kaixian-luohanmai (KL) induce homoeologous pairing in hybrids with alien species. In the present study, meiotic phenotypic differences on homoeologous chromosome pairing at metaphase I between hybrids of wheat genotypes Chinese Spring ph1b (CSph1b) and KL with rye were studied by genomic in situ hybridization (GISH). The frequency of wheat–wheat associations was higher in CSph1b × rye than in KL × rye. However, frequencies of wheat–rye and rye–rye associations were higher in KL × rye than in CSph1b × rye. These differences may be the result of different mechanisms of control between the ph-like gene(s) controlling homoeologous chromosome pairing in KL and CSph1b. Wheat–wheat associations were much more frequent than wheat–rye pairing in both hybriods. This may be caused by lower overall affinity, or homoeology, between wheat and rye chromosomes than between wheat chromosomes.


Sign in / Sign up

Export Citation Format

Share Document