scholarly journals Numerical Analysis of Boundary Layer Flow and Heat Transfer over a Stretching and Non-Stretching Bullet-Shaped Object

2021 ◽  
Vol 8 (4) ◽  
pp. 273-308
Author(s):  
Mohammed Ali ◽  
Md. Abdul Alim

The two-dimensional axisymmetric magnetohydrodynamic boundary layer flow with heat transfer of Newtonian fluid over a stretching and non-stretching bullet-shaped object has been investigated. Therefore, fluid flow and heat transfer have been investigated in two types of flow geometries such as the thicker surface and the thinner surface of the bullet-shaped object. The present analysis also focuses on the physical relevance and accurate trends of the boundary layer profiles which are adequate in the laminar boundary layer flow. The novelty of this current work is to discuss the effect of shape and size (surface thickness parameter s) and the stretching factor of the bullet-shaped object on the fluid velocity and temperature profiles within the boundary layer region also develop the relationship between the dependent and independent parameters by the correlation coefficient. The partial differential equations of momentum and energy have been reduced to a system of non-linear ordinary differential equations along with the transformed boundary conditions by applying the local similarity transformations. These coupled non‐linear ordinary differential equations’ governing the flow field has been solved by the Spectral Quasi-Linearization Method (SQLM). The numerical analysis of the SQLM has been carried out with MATLAB for investigating the effect of various controlling parameters on the flow fields. The residual error infinity norms have been analyzed to determine the speed of convergence and accuracy of the method. The numerical results have been displayed graphically and in tabular form and the physical behavior of the problem also discussed. The investigation shows that in the case of a thicker bullet-shaped object the velocity profile does not approach the ambient condition asymptotically but intersects the axis with a steep angle and the boundary layer structure has no definite shape whereas in the case of a thinner bullet-shaped object the velocity profile converge the ambient condition asymptotically and the boundary layer structure has a definite shape. It is also noticed that thinner bullet-shaped object acts as good cooling conductor compared to thicker bullet-shaped object and the wall friction can be reduced much when thinner bullet-shaped object is used rather than the thicker bullet-shaped object in both types of non-stretching or stretching bullet-shaped object . Keywords: forced convection, correlation coefficient, multiple regression, MHD, stretching

2017 ◽  
Vol 21 (5) ◽  
pp. 2167-2176 ◽  
Author(s):  
Fakhrodin Mohammadi ◽  
Mohamad Rashidi

In this paper, an efficient spectral collocation method based on the shifted Legendre polynomials is applied to study the unsteady boundary-layer flow and heat transfer due to a stretching sheet. A similarity transformation is used to reduce the governing unsteady boundary-layer equations to a system of non-linear ordinary differential equations. Then, the shifted Legendre polynomials and their operational matrix of derivative are used for producing an analytical approximate solution of this system of non-linear ordinary differential equations. The main advantage of the proposed method is that the need for guessing and correcting the initial values during the solution procedure is eliminated and a stable solution with good accuracy can be obtained by using the given boundary conditions in the problem. A very good agreement is observed between the obtained results by the proposed spectral collocation method and those of previously published ones.


2013 ◽  
Vol 29 (3) ◽  
pp. 559-568 ◽  
Author(s):  
G. C. Shit ◽  
R. Haldar ◽  
A. Sinha

AbstractA non-linear analysis has been made to study the unsteady hydromagnetic boundary layer flow and heat transfer of a micropolar fluid over a stretching sheet embedded in a porous medium. The effects of thermal radiation in the boundary layer flow over a stretching sheet have also been investigated. The system of governing partial differential equations in the boundary layer have reduced to a system of non-linear ordinary differential equations using a suitable similarity transformation. The resulting non-linear coupled ordinary differential equations are solved numerically by using an implicit finite difference scheme. The numerical results concern with the axial velocity, micro-rotation component and temperature profiles as well as local skin-friction coefficient and the rate of heat transfer at the sheet. The study reveals that the unsteady parameter S has an increasing effect on the flow and heat transfer characteristics.


2013 ◽  
Vol 18 (2) ◽  
pp. 447-459 ◽  
Author(s):  
S. Mukhopadhyay ◽  
R.S.R Gorla

An axi-symmetric laminar boundary layer flow of a viscous incompressible fluid and heat transfer towards a stretching cylinder is presented. Velocity slip is considered instead of the no-slip condition at the boundary. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and heat equations into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by the shooting method. It is found that the velocity decreases with increasing the slip parameter. The skin friction as well as the heat transfer rate at the surface is larger for a cylinder compared to those for a flat plate.


2018 ◽  
Vol 7 (4.33) ◽  
pp. 17
Author(s):  
Siti Nur Aisyah Azeman ◽  
. .

The dual solutions in the boundary layer flow and heat transfer in the presence of thermal radiation is quantitatively studied. The governing partial differential equations are derived into a system of ordinary differential equations using a similarity transformation, and afterward numerical solution obtained by a shooting technique. Dual solutions execute within a certain range of opposing and assisting flow which related to these numerical solutions. The similarity equations have two branches, upper or lower branch solutions, within a certain range of the mixed convection parameters. Further numerical results exist in our observations which enable to discuss the features of the respective solutions.  


2016 ◽  
Vol 12 (7) ◽  
pp. 6412-6421
Author(s):  
Ajala O.A ◽  
Aseelebe L. O ◽  
Ogunwobi Z. O

A steady two dimensional boundary layer flow and heat transfer with variable viscosity electrically conducting fluid at T in the presence of magnetic fields and thermal radiation was considered. The governing equations which are partial differential equations were transformed into ordinary differential equations using similarity variables, and the resulting coupled ordinary differential equations were solved using collocation method in MAPLE 18. The velocity and temperature profiles were studied graphically for different physical parameters. The effects of the parameters on velocity and temperature profile were showed.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Norihan Md. Arifin ◽  
Roslinda Nazar ◽  
Ioan Pop

The problem of steady Marangoni boundary layer flow and heat transfer over a flat plate in a nanofluid is studied using different types of nanoparticles. The general governing partial differential equations are transformed into a set of two nonlinear ordinary differential equations using unique similarity transformation. Numerical solutions of the similarity equations are obtained using the Runge-Kutta-Fehlberg (RKF) method. Three different types of nanoparticles are considered, namely, Cu, Al2O3, and TiO2, by using water as a base fluid with Prandtl numberPr=6.2. The effects of the nanoparticle volume fractionϕand the constant exponentmon the flow and heat transfer characteristics are obtained and discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
S. Nadeem ◽  
Abdul Rehman ◽  
Changhoon Lee ◽  
Jinho Lee

An analysis is carried out to obtain the similarity solution of the steady boundary layer flow and heat transfer of a second grade through a horizontal cylinder. The governing partial differential equations along with the boundary conditions are reduced to dimensionless form by using the boundary layer approximation and applying suitable similarity transformation. The resulting nonlinear coupled system of ordinary differential equations subject to the appropriate boundary conditions is solved by homotopy analysis method (HAM). The effects of the physical parameters on the flow and heat transfer characteristics of the model are presented. The behavior of skin friction coefficient and Nusselt numbers is studied for different parameters.


Author(s):  
Mohammad M. Rahman ◽  
Mohammed M. Al-Hatmi

In this paper we investigate numerically the hydromagnetic boundary layer flow and heat transfer characteristics of a nanofluid using three types of nanoparticles (copper, aluminium oxide and titanium dioxide) having various shapes (spherical, cylindrical, arbitrary, etc) by considering three kinds of base fluids (water, ethylene glycol and engine oil) over a nonlinear inclined stretching surface, taking into account the effect of convective surface condition. Using similarity transformations, the governing nonlinear partial differential equations of the physical model are transformed into non-dimensional ordinary differential equations which are solved for local similar solutions using the very robust computer algebra software, Maple 13. The numerical simulation is carried out to investigate the role of the pertinent parameters on the flow and temperature fields as well as on the rate of heat transfer and on the rate of shear stress. The results show that the addition of nanoparticles to the base fluid may not always increase the rate of heat transfer. It depends significantly on the surface convection, type of base fluid and nanoparticles.  The finding of this study will open a gate for better understanding of nanofluid characteristics.  


2013 ◽  
Vol 18 (4) ◽  
pp. 1003-1012 ◽  
Author(s):  
K. Bhattacharyya ◽  
R.S.R. Gorla

Abstract In the present paper, the axisymmetric boundary layer flow and heat transfer past a permeable shrinking cylinder subject to surface mass transfer is studied. The similarity transformations are adopted to convert the governing partial differential equations for the flow and heat transfer into the nonlinear self-similar ordinary differential equations and then solved by a finite difference method using the quasilinearization technique. From the current investigation, it is found that the velocity in the boundary layer region decreases with the curvature parameter and increases with suction mass transfer. Moreover, with the increase of the curvature parameter, the suction parameter and Prandtl number, the heat transfer is enhanced.


Sign in / Sign up

Export Citation Format

Share Document