scholarly journals A study of morfodynamic of active regions on the Sun for short-term flare prognosis

2007 ◽  
Vol 11 (3) ◽  
pp. 334-338
Author(s):  
M. Koval'chuk ◽  
M. Hirnyak
Keyword(s):  
The Sun ◽  
2000 ◽  
Vol 179 ◽  
pp. 263-264
Author(s):  
K. Sundara Raman ◽  
K. B. Ramesh ◽  
R. Selvendran ◽  
P. S. M. Aleem ◽  
K. M. Hiremath

Extended AbstractWe have examined the morphological properties of a sigmoid associated with an SXR (soft X-ray) flare. The sigmoid is cospatial with the EUV (extreme ultra violet) images and in the optical part lies along an S-shaped Hαfilament. The photoheliogram shows flux emergence within an existingδtype sunspot which has caused the rotation of the umbrae giving rise to the sigmoidal brightening.It is now widely accepted that flares derive their energy from the magnetic fields of the active regions and coronal levels are considered to be the flare sites. But still a satisfactory understanding of the flare processes has not been achieved because of the difficulties encountered to predict and estimate the probability of flare eruptions. The convection flows and vortices below the photosphere transport and concentrate magnetic field, which subsequently appear as active regions in the photosphere (Rust & Kumar 1994 and the references therein). Successive emergence of magnetic flux, twist the field, creating flare productive magnetic shear and has been studied by many authors (Sundara Ramanet al.1998 and the references therein). Hence, it is considered that the flare is powered by the energy stored in the twisted magnetic flux tubes (Kurokawa 1996 and the references therein). Rust & Kumar (1996) named the S-shaped bright coronal loops that appear in soft X-rays as ‘Sigmoids’ and concluded that this S-shaped distortion is due to the twist developed in the magnetic field lines. These transient sigmoidal features tell a great deal about unstable coronal magnetic fields, as these regions are more likely to be eruptive (Canfieldet al.1999). As the magnetic fields of the active regions are deep rooted in the Sun, the twist developed in the subphotospheric flux tube penetrates the photosphere and extends in to the corona. Thus, it is essentially favourable for the subphotospheric twist to unwind the twist and transmit it through the photosphere to the corona. Therefore, it becomes essential to make complete observational descriptions of a flare from the magnetic field changes that are taking place in different atmospheric levels of the Sun, to pin down the energy storage and conversion process that trigger the flare phenomena.


2021 ◽  
Vol 65 (6) ◽  
pp. 507-517
Author(s):  
S. A. Yazev ◽  
E. S. Isaeva ◽  
Yu. V. Ishmukhametova

2017 ◽  
Vol 55 (1) ◽  
pp. 1-11
Author(s):  
V. M. Bogod ◽  
T. I. Kal’tman ◽  
N. G. Peterova ◽  
L. V. Yasnov

2017 ◽  
Vol 98 (11) ◽  
pp. 2387-2396 ◽  
Author(s):  
Keith T. Strong ◽  
Joan T. Schmelz ◽  
Julia L. R. Saba ◽  
Therese A. Kucera

Abstract The Sun is often racked by short-term violent events such as flares and coronal mass ejections (CMEs) but these two phenomena are often confused. Both are caused by the release of energy due to the reconnection of stressed and unstable magnetic fields. Flares bathe the solar system in electromagnetic radiation from gamma rays to radio emissions. CMEs throw billions of tons of solar plasma into interplanetary space at velocities of over 1,000 km s−1. Flares can occur without significant ejecta being spewed out from the Sun into the solar system. CMEs can occur without a significant flare being detected. The most violent and dangerous events occur when a large flare is accompanied by a major eruption. These violent events are much more common near solar maximum but can occur at any time during the solar cycle, so we are rarely completely immune to their effects. Various types of solar activity can lead to problems with electrical grids, navigation systems, and communications, and can present a hazard to astronauts, as will be discussed in future papers in this series.


2017 ◽  
Vol 13 (S335) ◽  
pp. 243-249 ◽  
Author(s):  
Huaning Wang ◽  
Yihua Yan ◽  
Han He ◽  
Xin Huang ◽  
Xinghua Dai ◽  
...  

AbstractIt is well known that the energy for solar eruptions comes from magnetic fields in solar active regions. Magnetic energy storage and dissipation are regarded as important physical processes in the solar corona. With incomplete theoretical modeling for eruptions in the solar atmosphere, activity forecasting is mainly supported with statistical models. Solar observations with high temporal and spatial resolution continuously from space well describe the evolution of activities in the solar atmosphere, and combined with three dimensional reconstruction of solar magnetic fields, makes numerical short-term (within hours to days) solar activity forecasting possible. In the current report, we propose the erupting frequency and main attack direction of solar eruptions as new forecasts and present the prospects for numerical short-term solar activity forecasting based on the magnetic topological framework in solar active regions.


2018 ◽  
Vol 13 (S340) ◽  
pp. 325-326
Author(s):  
G. L. Jayalekshmi ◽  
P. R. Prince

AbstractSunspots are active regions on the surface of the Sun having strong magnetic fields. Activity level of the Sun shows long-time scale phenomena known as grand episodes-Grand maxima and Grand minima. Present study examines grand episodes shown by sunspot numbers (1090-2017), using methods of wavelet transform and sinusoidal regression. Time interval analysed includes two grand maxima and four grand minima. Interval in between grand episodes are regular oscillations. Phase changes found from periodicity analysis clearly show the presence of upcoming grand episodes. The forthcoming grand episodes are suggested to be two grand minima which are likely to occur between the years 2100-2160 and 2220-2300.


1993 ◽  
Vol 137 ◽  
pp. 675-678
Author(s):  
Gaetano Belvedere

AbstractRecently it has beeen suggested that the latitude distribution of the main surface features of solar activity is intimately related to the angular velocity profile inside the Sun through the working of a MHD dynamo in the boundary layer between the convective and the radiative zones (Belvedere et al. 1991).Although the present observational capabilities are not very encouraging, here we want to point out, in the framework of the analogy to the Sun (solar-stellar connection), that space observations of surface distribution and latitudinal migration of active regions on stellar surfaces, which could be carried out in this decade with more sophisticated techniques, may conversely allow us to infer the rotation profile, and consequently the angular momentum distribution, in stellar interiors. This methodology may in principle be considered alternate or complementary to the classical one based on observation of acoustic oscillations.


1991 ◽  
Vol 130 ◽  
pp. 386-388
Author(s):  
Artie P. Hatzes ◽  
William D. Cochran

AbstractAt McDonald Observatory we have been monitoring the relative radial velocities of a sample of K giants. The technique employed uses the telluric O2 lines near 6300 Å as a reference for measuring the stellar line shifts. We demonstrate that precisions of 10 m s−1 are possible with this technique. We present radial velocity data covering a 2 year time span for α Boo, α Tau, and β Gem. All of these stars show both long term variations (~ several hundred days) with a peak-to-peak amplitude of about 400 m s−1 and short term variations (~ few days) with a peak-to-peak amplitude of about 100 m s−1. The long term variations may be due to the rotational modulation of surface active regions whereas the short term variations may be indicative of pulsations.


Sign in / Sign up

Export Citation Format

Share Document