major eruption
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 1)

H-INDEX

9
(FIVE YEARS 0)

Author(s):  
Tony Rey ◽  
Frederic Leone ◽  
Stéphanie Defossez ◽  
Monique Gherardi ◽  
Fleurice Parat

The objective of our study is to establish an assessment of four volcanic hazards in a country threatened by the eruption of the OlDoinyo Lengai volcano. The last major eruption dates back to 2007-2008 but stronger activity in 2019 has revived the memory of volcanic threats to the Maasai and Bantu communities and human activities (agro-pastoral and tourism). The methods chosen have had to be adapted to the scarce and incomplete data. The volcanic hazards and their probability of occurrence were analysed on the basis of data available in the scientific literature and were supplemented by two field missions combining geography and hydro-geomorphology. Our study enabled us to map the hazards of ash fall, lava flows, lahars and avalanches of debris. Each hazard was spatialised by being ascribed an intensity. They are sometimes synchronous with the eruption sometimes they occur several months or years after a volcanic eruption. The results are the first step towards developing a volcanic risk management strategy, especially for the pastoral communities living around Lengai and for the growing tourist activities in this area.



2020 ◽  
Vol 13 (8) ◽  
pp. 4261-4276
Author(s):  
Travis N. Knepp ◽  
Larry Thomason ◽  
Marilee Roell ◽  
Robert Damadeo ◽  
Kevin Leavor ◽  
...  

Abstract. Aerosol backscatter coefficients were calculated using multiwavelength aerosol extinction products from the SAGE II and III/ISS instruments (SAGE: Stratospheric Aerosol and Gas Experiment). The conversion methodology is presented, followed by an evaluation of the conversion algorithm's robustness. The SAGE-based backscatter products were compared to backscatter coefficients derived from ground-based lidar at three sites (Table Mountain Facility, Mauna Loa, and Observatoire de Haute-Provence). Further, the SAGE-derived lidar ratios were compared to values from previous balloon and theoretical studies. This evaluation includes the major eruption of Mt. Pinatubo in 1991, followed by the atmospherically quiescent period beginning in the late 1990s. Recommendations are made regarding the use of this method for evaluation of aerosol extinction profiles collected using the occultation method.



2020 ◽  
Vol 57 ◽  
pp. 101053 ◽  
Author(s):  
Mathilde Bablon ◽  
Xavier Quidelleur ◽  
Giuseppe Siani ◽  
Pablo Samaniego ◽  
Jean-Luc Le Pennec ◽  
...  


2020 ◽  
Author(s):  
Igor Aleinov ◽  
Michael Way ◽  
Kostas Tsigaridis ◽  
Eric Wolf ◽  
Chester Harman ◽  
...  

<p>The fact that the Moon could have a transient secondary atmosphere due to volcanic outgassing has been known for some time, though typically such an atmosphere was believed to be extremely thin (~10<sup>-8</sup> bar) [1]. But recent research by Needham and Kring (NK) [2] suggests that during the peak of volcanic activity ~3.5 Ga such a volcanically-outgassed atmosphere could reach ~10<sup>-2</sup> bar of surface pressure. In similar research Wilson et al. [3] proposed a more conservative estimate, arguing that the thickness of such an atmosphere would depend on the intervals between major eruptions and may not exceed microbar densities. In either case a collisional atmosphere could be present, which would control transport of outgassed volatiles (such as H<sub>2</sub>O) and their deposition in polar regions, where they could be preserved until modern day frozen in permanently shadowed regions (PSR) or buried beneath the regolith.</p><p>Here we study such a hypothetical atmosphere to investigate its stability, meteorological properties and the effect on transport of volatiles. We use the ROCKE-3D planetary 3-D General Circulation Model (GCM)[4]. The insolation and orbital parameters were set to conditions 3.5 Ga. The atmospheric composition, based on the list of outgassed species presented by NK in combination with our estimates for atmospheric escape, condensation and the results from our 1-D chemistry model, was chosen to be either CO-dominated or CO<sub>2</sub>-dominated (depending on atmospheric temperature). In this study we restricted ourselves to relatively "thick" lunar atmospheres of 1-10 mb, though we believe that our results will scale to thinner atmospheres as well.</p><p>We present the results for ground and atmospheric temperature for modeled atmospheres over a wide parameter space. In particular we consider  different atmospheric compositions (CO or CO<sub>2</sub> dominated), a set of atmospheric pressures from 1 mb to 10 mb and a set of obliquities from 0<sup>o</sup> to 40<sup>o</sup>. We also present an experiment of a single major eruption [5] and show that in just 3 years ~80% of the outgassed water is deposited in polar regions. This demonstrates the efficiency of such an atmosphere in delivering volatiles. We argue that a secondary lunar atmosphere could play a significant role in forming volatile deposits currently observed in the polar regions of the Moon. </p><p>References:<br>[1] Stern S. A. (1999) Rev. of Geophysics, 37, 453-492.<br>[2] Needham D. H. and Kring D. A. (2017) Earth and Planetary Sci. Lett., 478, 175-178.<br>[3] Wilson L. et al. (2019) LPSC 50, Abstract 1343. <br>[4] Way M. J. et al. (2017) ApJS, 231, 12.<br>[5] Wilson L. and Head J. W. (2018) GRL, 45, 5852-5859.</p><p> </p>



2020 ◽  
Author(s):  
Joel Savarino ◽  
Elsa Gautier ◽  
Nicolas Caillon ◽  
Emmanuelle Albalat ◽  
Francis Albarède ◽  
...  

<p>The ca. 74 ka BP ‘‘super-eruption’’ of Toba volcano in Sumatra is the largest known Quaternary eruption. It expelled an estimated of 2800 km<sup>3</sup> of dense rock equivalent, creating a caldera of 100 x 30 km. The eruption is estimated to have been 3500 greater than the Tambora eruption that created the “year without summer” in 1816 in Europe (Oppenheimer, 2002). However, the consequences of this “mega-eruption” on the climate and human evolution that could be expected for such eruption are still debated and uncertain. There is no evidence that this eruption has triggered any catastrophic climate change such as a “nuclear winter”. One of such lack of evidence lies in the ice.</p><p>In the ice core community, this eruption still remains a mystery. Indeed, the estimated size of the eruption should have left a gigantic mark in the ice, at least in the form of a huge sulfuric acid layer but none of the ice records covering this period show any such singularity. The sulfate record seems so common that it is in fact difficult to allocate a specific sulfate peak to this event.</p><p>In an effort to synchronize the Vostok ice core and the EPICA Dome C core, (Svensson et al., 2013) have identified three possible sulfuric acid layers for the Toba eruption in the Vostok ice core. In order to see if one of such event could have been the Toba eruption, we have performed the sulfur  & oxygen isotope analysis of these three sulfuric acid layers in the hope that it could reveal some particularity. The sulfur results show that 1- all these three events have injected their products in the stratosphere and 2- the sulfur isotopic compositions of these three events share a common array, array that is in lines with other stratospheric eruptions, however one of the three acid layers shows an extremely and unusual weak oxygen anomaly, potentially indicating a major eruption. In order to remove the last doubts about the existence or not of one or a series of eruptions related to TOBA, the geochemical analysis of volcanic glasses trapped in the ice will be performed and presented. </p>



2020 ◽  
Author(s):  
Jose-Luis Fernandez-Turiel ◽  
Francisco-Jose Perez-Torrado ◽  
Alejandro Rodríguez-Gonzalez ◽  
Norma Ratto ◽  
Marta Rejas ◽  
...  

<p>The major eruption of the Cerro Blanco Volcanic Complex (CBVC), in the Central Volcanic Zone of the Andes, NW Argentina, dated at 4410–4150 a cal BP, was investigated confirming that is the most important of the three major Holocene felsic eruptive events identified in the southern Puna (Fernandez-Turiel et al., 2019). Identification of pre–, syn–, and post–caldera products of CBVC allowed us to estimate the distribution of the Plinian fallout during the paroxysmal syn–caldera phase of the eruption. Results provide evidence for a major rhyolitic explosive eruption that spread volcanic deposits over an area of about 500,000 km<sup>2</sup>, accumulating >100 km<sup>3</sup> of tephra (bulk volume). This last value exceeds the lower threshold of Volcanic Explosive Index (VEI) of 7. Ash-fall deposits mantled the region at distances >400 km from source and thick pyroclastic-flow deposits filled neighbouring valleys up to several tens of kilometres from the vent. This eruption is the largest documented during the past five millennia in the Central Volcanic Zone of the Andes, and is probably one of the largest Holocene explosive eruptions in the world.</p><p>The implications of the findings of the present work reach far beyond having some chronostratigraphic markers. Further interdisciplinary research should be performed in order to draw general conclusions on these impacts in local environments and the disruptive consequences for local communities. This is invaluable not just for understanding how the system may have been affected over time, but also for evaluating volcanic hazards and risk mitigation measures related to potential future large explosive eruptions.</p><p>Financial support was provided by the ASH and QUECA Projects (MINECO, CGL2008–00099 and CGL2011–23307). We acknowledge the assistance in the analytical work of labGEOTOP Geochemistry Laboratory (infrastructure co–funded by ERDF–EU Ref. CSIC08–4E–001) and DRX Laboratory (infrastructure co–funded by ERDF–EU Ref. CSIC10–4E–141) (J. Ibañez, J. Elvira and S. Alvarez) of ICTJA-CSIC, and EPMA and SEM Laboratories of CCiTUB (X. Llovet and J. Garcia Veigas). This study was carried out in the framework of the Research Consolidated Groups GEOVOL (Canary Islands Government, ULPGC) and GEOPAM (Generalitat de Catalunya, 2017 SGR 1494).</p><p> </p><p>Fernandez–Turiel, J.L., Perez–Torrado, F.J., Rodriguez–Gonzalez, A., Saavedra, J., Carracedo, J.C., Rejas, M., Lobo, A., Osterrieth, M., Carrizo, J.I., Esteban, G., Gallardo, J., Ratto, N., 2019. The large eruption 4.2 ka cal BP in Cerro Blanco, Central Volcanic Zone, Andes: Insights to the Holocene eruptive deposits in the southern Puna and adjacent regions. Estudios Geologicos 75, e088.</p>



2020 ◽  
Vol 6 (2) ◽  
pp. 331-351
Author(s):  
Gail M. Ashley ◽  
Carol B. Wet ◽  
Leah M. Houser ◽  
Jeremy S. Delaney


2020 ◽  
Author(s):  
Travis N. Knepp ◽  
Larry Thomason ◽  
Marilee Roell ◽  
Robert Damadeo ◽  
Kevin Leavor ◽  
...  

Abstract. Aerosol backscatter coefficients were calculated using multi-wavelength aerosol extinction products from the SAGE II and SAGE III/ISS instruments. The conversion methodology is presented followed by an evaluation of the conversion algorithm's robustness. The SAGE-based backscatter products were compared to backscatter coefficients derived from ground-based lidar at three sites (Table Mountain Facility, Mauna Loa, and Observatoire de Haute-Provence). This evaluation includes the major eruption of Mt. Pinatubo in 1991 followed by the atmospherically quiescent period beginning in the late nineties. Recommendations are made regarding the use of this method for evaluation of aerosol extinction profiles collected using the occultation method.





2018 ◽  
Vol 609 ◽  
pp. A69 ◽  
Author(s):  
Ricardo F. González

In this paper, new two-dimensional hydrodynamical simulations of η Car’s nebulae are performed. In the 1840s, the massive star η Car suffered a major eruption that resulted in the formation of a bipolar structure, which is commonly known as the large Homunculus. During this event, η Car expelled into the circumstellar material a total mass of ~10 M⊙ and released a total energy of Ek ~ 1050 erg over a very short time (≤5 yr). These kinds of explosive events are frequently called supernova impostors due to their resemblance to a type II supernova, but the stars survive the explosion. In the case of η Car, a brief explosion scenario provides a potential explanation for the behavior of the historical light curve of η Car a few years (~10 yr) after the nineteenth century outburst. Here, such an alternative scenario of an explosion is assumed (instead of a super-Eddington wind) in order to investigate whether an explosive event is also able to explain the shape and kinematics of the large Homunculus. I show that the numerical simulations presented here indeed resemble some of the observed features of the nebula, such as the present-day double-shell structure of the Homunculus, with a thin outer dense shell and a thicker inner layer, as well as thermal instabilities (Rayleigh-Taylor and Kelvin-Helmholtz) along the dense shell that may lead to the current mottled appearance of the large Homunculus. Nonetheless, the explosion model for the 1840s major eruption of η Car is not able to account for the estimated age of the large Homunculus.



Sign in / Sign up

Export Citation Format

Share Document