DEVICE REALIZATION OF MAGNETIC METHOD FOR DEFINITION OF METAL STRENGTHENED LAYER THICKNESS IN ROLLING-STOCK AXLE

2021 ◽  
Vol 2021 (2) ◽  
pp. 28-37
Author(s):  
Yuriy Livcov ◽  
Vladimir Bezkorovaynyy ◽  
Andrey Kireev

The simplest and accessible method for rolling-stock axle surface strengthening is surface processing with cold plastic deformation by means of rolling. This process is one of the stages in manufacturing diesel locomotive and car axles of a rolling-stock. The basic parameters of rolling engineering process are micro-hardness of a metal surface strengthened layer and its depth, which at present are controlled by means of cutting out longitudinal polished specimens from the axle and in case of the deviation from the required value the whole set axles is rejected. That is why there is offered a method of the non-destruction control of micro-hardness and depth of axle strengthening the essence of which is not only in the control of a strengthening degree value, but in the instant correction of rolling equipment in case of the deviation from the parameter, as this device is integrated in the interface of a rolling machine. In such a way, an actual value of strengthened layer micro-hardness will be always within the specified limits. The principle of device operation is based on the topography changes in the scattering magnetic field of preliminary magnetized local volume of ferromagnetic material. There are shown numerical experiments for the dependence parameter definition of a scattering field of a magnetic mark from thickness and magnetic properties of a strengthened metal layer which had given a possibility to obtain the analytical dependences of a strengthened layer thickness and coercive force of the strengthened layer upon the parameters of a horizontal and vertical constituents of the scattering field strength of the magnetic mark. There are obtained results of natural experiments which allow defining magnetic properties of the upper metal layer in the axle and checking the correctness of data obtained at numerical computations, computation errors do not exceed 6%. The integration circuit of the mentioned structure-scope in the configuration of a rolling machine to obtain a feedback on a micro-hardness value of a surface strengthened layer.

Author(s):  
V. S. Bezkorovayniy ◽  
V. V. Yakovenko ◽  
Y. V. Livtsov

The routine method to control metal surface layer is Vickers hardness test method. The existing nondestructive testing methods are based on measuring induction density and other magnetic quantities in magnetizer core. This causes the method error and restricts the ability to determine the structure of the processed material. The paper provides theoretical and experimental investigation of the method for controlling the hardened axis layer parameters by analyzing characteristics of stray magnetic field of the axis magnetized local surface area before and after rouletting. A method is proposed for determining the hardened metal layer thickness of the rolling stock axis, based on measuring the parameters of the magnetized local area stray magnetic field before and after processing. To justify the proposed method, mathematical modeling of stray magnetic field of the axis local magnetized section is performed before and after processing. Inspection for the hardened metal layer is performed using magnetization of the axis local segment with electromagnet, followed by measuring the stray magnetic field strength. The maximum value of the horizontal magnetic force is determined, which is an informative parameter. A mathematical model is developed for the magnetized section magnetic field, the results of numerical and field experiments are presented. The discrepancy between the experimental data and the results of theoretical calculations is estimated. The method makes it possible to control the thickness of the hardened metal layer and the quality of the hardening of the rolling stock axis.


2014 ◽  
Vol 28 (06) ◽  
pp. 1450043 ◽  
Author(s):  
Shuyun Wang ◽  
Yuanmei Gao ◽  
Tiejun Gao ◽  
Yuan He ◽  
Hui Zhang ◽  
...  

A series of Ta (4 nm)/ ZnO (t nm )/ Ni 81 Fe 19 (20 nm)/ ZnO (t nm )/ Ta (3 nm) magnetic thin films were prepared on lower experimental conditions by magnetron sputtering method. Effects of ZnO layer thickness and substrate temperature on anisotropic magnetoresistance and magnetic properties of these Ni 81 Fe 19 films have been investigated. The experiment results show that the anisotropic magnetoresistance value of the Ni 81 Fe 19 film is enhanced with the increasing of the inserted ZnO layer thickness. When the ZnO thickness is 2 nm, the anisotropic magnetoresistance value achieves the maximum. In addition, the anisotropic magnetoresistance of the Ni 81 Fe 19 film is also enhanced with the increasing of substrate temperature, and when the temperature is 450°C, the anisotropic magnetoresistance reaches the maximum. The anisotropic magnetoresistance value of 20 nm Ni 81 Fe 19 films with 2 nm ZnO layer can achieve 3.63% at 450°C which is enhanced 11.6% compare with the films without ZnO layer.


2012 ◽  
Vol 25 (7) ◽  
pp. 2193-2198 ◽  
Author(s):  
P. Prieto ◽  
L. Marín ◽  
S. M. Diez ◽  
J.-G. Ramirez ◽  
M. E. Gómez

Sign in / Sign up

Export Citation Format

Share Document