magnetic method
Recently Published Documents


TOTAL DOCUMENTS

327
(FIVE YEARS 76)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Abraham Mulualem

Abstract A geophysical survey involving magnetic method is conducted using ENVI-MAG proton precision magnetometer. The study is carried out with the aim of identifying the possible geological structures which may responsible for the failure of engineering structures. Three traverses having east –west orientation with a ten meters profile spacing and a readings station spacing and one traverse across the three traverses and randomly collected magnetic data were used. At each station three readings were taken and averaged out in order to increase the accuracy of data and diurnal and geomagnetic corrections were made. With the corrected data different anomalous maps were produced like total magnetic field anomaly map, residual magnetic anomaly map and analytical signal map using Oasis montaji6.4 software for further interpretation. The result of this research has shown that the area is affected by different geological structures which may be the cause for the crack and the failure of the building in the area.


Author(s):  
Tao Chen ◽  
Xuedong Chen ◽  
Junhai Chen ◽  
Jihong Zhang ◽  
Chunjiao Liu

Abstract In view of the carburization of Fe-Cr-Ni high-temperature heat-resistant alloys in the ethylene cracking furnace and the hydrogen conversion furnace, this paper implemented the GMRI-I carburizing detector to test the degree of carburization of 25Cr35NiNb+ microalloy inlet pipe and 35Cr45NiNb+ microalloy outlet pipe of the ethylene cracking furnace after service as well as the reinforced joint made of Incoloy 800H from the hydrogen-making reformer. In conjunction with the results of the low-power acid corrosion test, a rapid detection method for the degree of carburization was proposed. Based on the experimental results of the carburizing detector and the laboratory test data, the carburization degree test curve of the above three alloys based on the magnetic field strength has been established. The detection accuracy was circa. 5% and the error was ±10%, which is convenient for guiding the use and replacement of Fe-Cr-Ni high-temperature heat-resistant alloy materials for ethylene cracking furnace and hydrogen conversion furnace, thereby ensuring the safe and stable operation of the device.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052042
Author(s):  
I K Tsybriy ◽  
N S Koval ◽  
I A Topolskaya

Abstract The widespread use of solid-alloy tools in modern engineering makes it necessary to ensure and maintain quality in the process of their production. The use of hard alloy plates of inadequate quality results in the instability of the mechanical processing and, as a consequence, the quality of the processed products in the batch is reduced. Heterogeneity of structure and properties is a significant disadvantage of products of cermet solid alloys as a product of powder metallurgy. They must therefore be subject to 100 per cent quality control. Today, various methods are used in order to control the physical and mechanical properties of products, such as hardness and microhardness of the surface and surface layer. Non-destructive control methods, one of which is a magnetic method based on measurement of the coercive force of an article, are of high priority and potential. A coercimeter instrument is proposed to implement this method. This research gives a description of the principle of its work, the functions performed by individual nodes, their electrical circuits and possibilities.


2021 ◽  
Vol 36 (5) ◽  
pp. 557-563
Author(s):  
A. G. Toroslu

Abstract Recycling of plastic materials has become more environmentally important than recycling of other materials. The most important problem during recycling is the presence of oil, dirt, dust and metal particles that are mixed with plastic materials. These mixtures can change their its mechanical and physical properties and it is quite costly to remove them completely. Removing iron alloy particles from plastic is possible by using the magnetic method. However, removing non-metallic materials requires extra processing. In this study, the use of recycled High-Density Polyethylene (rHDPE) without an expensive cleaning processes has been investigated. Different amounts of aluminium oxide (Al2O3) were added to High Density Polyethylene (HDPE) to simulate the effect of non-metallic material involved. The effect of these contamination rates on the mechanical and physical properties of HDPE was examined in detail. For this purpose, recyclable materials were produced by mixing rHDPE with 1%, to 7% Al2O3 . The results show that up to 7% of the mixture has acceptable effects on the properties of HDPE. When the results of the experiments are examined, it is observed that there is a 3.74% change in the elastic modulus of the material. This means, that up to 7% non-metal contaminated rHDPE material can be used without any costly recycling process.


2021 ◽  
Vol 34 (04) ◽  
pp. 1148-1163
Author(s):  
Omid Amani Jafarlou ◽  
Afshin Ashja Ardalan ◽  
Ahmad Adib ◽  
Alireza Ganji ◽  
Soheila Bouzari

The airborne magnetic method is one of the most significantly applied approaches in mineral exploration. This magnetic method has been widely used in recent years due to its extensive coverage, lower cost than other methods and coverage of impassable areas and forests. For many years in Iran, the magnetic method has been utilized by authorities to survey ore deposits and to prepare structural and geological maps. This paper presents part of the Dehshir area exploration data of airborne surveys by helicopter with flight line spacing of 250 meters and flight height of 40 meters conducted by Geological Survey and Mineral Exploration of Iran. Furthermore, among the potential areas in the Dehshir area is the studied hereby area of Block C2 of Sourk mine. This region in Yazd province with a 4.1 km2 area is located at 95 km northwest of Yazd city. The purpose of this paper is to present a three-dimensional model of magnetic data and its validation using drilling data. The three-dimensional modeling of magnetic data has been processed by Inversion method. Next, the locations of boreholes were proposed for drilling. Then, the boreholes data is used to evaluate the geophysical method model by comparing the three-dimensional modeling of magnetic data and three-dimensional modeling of the proposed drilled boreholes data.


2021 ◽  
Vol 10 (3) ◽  
pp. 70-79
Author(s):  
Wahyu Eko Junian ◽  
Agus Laesanpura ◽  
Andri Yadi Paembonan ◽  
Muhammad Arief Wicaksono

Abstrak. Cibaliung merupakan daerah pertambangan mineral yang berada di Provinsi Banten. Hal ini, dibuktikan dengan adanya lubang tambang emas di daerah Cikoneng dan Cibitung. Penelitian tentang geofisika penting dilakukan guna menemukan cadangan emas baru di daerah Ciparay yang terletak di Sebelah Tenggara Cikoneng dan Cibitung. Metode geofisika yang digunakan di antaranya magnetik, resistivitas, dan induced polarization (IP). Metode magnetik digunakan sebagai survei pendahuluan untuk menggambarkan keberadaan struktur geologi pengontrol mineralisasi emas. Melalui peta reduce to pole dapat diketahui adanya tanda-tanda keberadaan struktur geologi yang ditunjukkan oleh anomali negatif (-220 hingga -135 nT) di Bagian Barat Daya daerah penelitian. Hasil teknik edge detectors menunjukkan adanya pola struktur dengan arah Northwest (NW) dan North-Northeast (NNE) yang dominan berada di Bagian Barat Daya sebelah Utara daerah penelitian. Metode resistivitas dan IP digunakan sebagai survei detail untuk menentukan keberadaan mineral yang terkandung dalam batuan. Hasilnya menunjukkan bahwa zona potensi mineralisasi ditunjukkan oleh anomali tinggi (resistivitas 50 ohm.m dan chargeability 40 msec). Resistivitas tinggi diduga sebagai respons batuan induk andesitic sedangkan, nilai chargeability tinggi merupakan respons dari hadirnya mineral-mineral bijih seperti emas dan perak. Zona potensi mineralisasi berada pada posisi patok 350-800 dengan arah persebaran mengikuti arah struktur geologi pengontrolnya yaitu NW dan NNE. Abstract. Cibaliung is a mineral mining area located in Banten Province. The area including gold mining in Cikoneng and Cibitung areas. Geophysical research is important to find new gold reserves at the Ciparay area, located in the Southeast of Cikoneng and Cibitung. Geophysical methods used include magnetic, resistivity, and IP. The magnetic method was applied as a preliminary survey to delineate the presence of the geological structure controlling the gold mineralization. Based on the RTP map, signs of the presence of geological structures are shown by anomalies -220 to -135 nT in the Southwestern part of the study area. The results of edge detector techniques show the existence of structural patterns in the direction of NW and NNE which are dominant in the Southwestern North of the study area. The resistivity and IP methods are employed for detailed investigation in order to obtain to determine the presence of minerals contained in rocks. The results show that the mineralized zones are indicated by high resistivity ( 50 ohm.m) and high chargeability ( 40 msec). High resistivity response is caused by andesitic source rock whereas, high chargeability response is related to the presence of ore minerals such as gold and silver. The mineralization prospect zone is indicated at the position of 350-800 and its direction corresponds to the direction of its geological structure namely NW and NNE.Keywords: New gold reserves, Negative magnetic anomalies, High resistivity, High chargeability. 


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 877
Author(s):  
Rohollah Nasiri ◽  
Amir Shamloo ◽  
Javad Akbari

Circulating tumor cells (CTCs) isolation from a blood sample plays an important role in cancer diagnosis and treatment. Microfluidics offers a great potential for cancer cell separation from the blood. Among the microfluidic-based methods for CTC separation, the inertial method as a passive method and magnetic method as an active method are two efficient well-established methods. Here, we investigated the combination of these two methods to separate CTCs from a blood sample in a single chip. Firstly, numerical simulations were performed to analyze the fluid flow within the proposed channel, and the particle trajectories within the inertial cell separation unit were investigated to determine/predict the particle trajectories within the inertial channel in the presence of fluid dynamic forces. Then, the designed device was fabricated using the soft-lithography technique. Later, the CTCs were conjugated with magnetic nanoparticles and Ep-CAM antibodies to improve the magnetic susceptibility of the cells in the presence of a magnetic field by using neodymium permanent magnets of 0.51 T. A diluted blood sample containing nanoparticle-conjugated CTCs was injected into the device at different flow rates to analyze its performance. It was found that the flow rate of 1000 µL/min resulted in the highest recovery rate and purity of ~95% and ~93% for CTCs, respectively.


2021 ◽  
Vol 62 (3b) ◽  
pp. 41-50
Author(s):  
Khanh Tuan Nguyen ◽  
Toi Trung Tran ◽  
Thuat Tien Phung ◽  

Laterite nickel ores, accounting for about 70% of total world nickel reserves, are very abundant and considered as an important resource of nickel. However, nickel content of laterite ores are generally low of about 0.5÷2.5% Ni. In addition, nickel minerals are very finely disseminated in the ores, so that traditional separation methods such as froth flotation, gravity method, magnetic method, and electrical separation produce very low recovery efficiency. Currently, the treatment of this type of ores is being intensively studied and directed to use common available processes including: Hydrometallurgical, pyrometallurgical, and reduction roasting - magnetic separation processes. This article aims to summarize typical studies on the characteristics of current laterite nickel ore processing technologies commonly used in the world and in Vietnam. From the review, appropriate direction for treatment of Thanh Hoa - Vietnam laterite nickel ores can be proposed.


Author(s):  
Igor Bondarenko ◽  
Oleg Avrunin

The subject of study in the article is the acoustic resistance of local areas of the biological tissues in vivo, depending on their pathology. The aim of the work is to develop a quantitative method for measuring the acoustic resistance of local areas of the biological tissue (substance) located inside the human body. The following tasks are solved in the article: development of scientific foundations of the acousto-magnetic method for measuring the acoustic resistance of local areas of the biological tissue; development of a remote method for measuring electrical voltage on the surface of the patient's skin, caused by acousto-magnetic impact on local areas of the tissue and determined by the value of acoustic resistance; calculation of the ratios binding the value of the acoustic resistance of the local areas of the tissue with the electric voltage on the measuring probes on the patient's skin, the values of the acoustic radiation power and the external constant magnetic field, as well as with the distance between the probes and the local area of the biological tissue; verification of the calculated ratios using the experimental determination of the acoustic resistance of the local area of the model biological tissue. The following methods were used: physical modeling of the biological tissue, physical and mathematical modeling of electrical properties of the local part of the biological tissue, calculation of electromagnetic and acoustic parameters of the tissue, experimental measurement of electric field strength excited in the local part of the biological tissue, verification of calculated relations by comparing them with experimental results. The following results were obtained: the scientific foundations of the acousto-magnetic method for the quantitative measurement of the acoustic resistance of local areas of the biological tissue were developed; a remote method for measuring the electric voltage on the surface of the patient's skin caused by the acousto-magnetic effect on local areas of the tissue and the determined value of the acoustic impedance was developed; relations were calculated connecting the value of the acoustic impedance of local areas of the tissue with the electric voltage on the measuring probes on the patient's skin, the values of the acoustic radiation power and external constant magnetic field, as well as the distance between the probes and the local area of the biological tissue; verification of the calculated ratios was carried out using the experimental determination of the acoustic resistance of the local area of the model biological tissue. Conclusions: The scientific foundations of the remote acousto-magnetic method of high-precision measurement of the acoustic resistance of local areas of human biological tissue, confirmed experimentally on model tissue samples, have been developed. The method can make it possible to reveal with high accuracy the functional relations of the measured local value of acoustic resistance with pathological changes in the tissue. At the same time, the influence of the human factor on the interpretation of the recorded values of acoustic resistance (which is characteristic of the traditional, mainly qualitative, rather than quantitative ultrasound method) is excluded, the information content and reliability of acoustic diagnostics are increased.


2021 ◽  
Vol 4 (2) ◽  
pp. 62-69
Author(s):  
Ahmat Munawir Siregar ◽  
Ira Kusuma Dewi ◽  
Ngatijo Ngatijo

This study aimed to identify granite rocks around the Nyelanding geothermal area, especially in the geothermal manifestations. This research used the magnetic method to analyze the subsurface structure of the geothermal area. Correction of magnetic data was performed in Microsoft excel 2010 software and two-dimensional modeling was performed using Oasis Montaj 8.4. The results showed that there are three layers of rock under Nyelanding hot springs, namely granite with a susceptibility of 0.009 - 0.05 SI to a depth of 500 meters and a layer of sandstone - clay, as well as layers of clay, gravel and silt with a susceptibility of 0.00001 - 0, 00005 SI. In conclusion, the local geology of the Nyelanding hot spring area is dominated by the presence of granite to a depth of 500 meters. The results of forward modeling on layers A-A' and C-C' show the subsurface structure of Nyelanding hot springs in the form of a granite rock basin which is estimated to be able to accumulate geothermal energy. Key words: Nonvolcanic Geothermal, Magnetic Method, Granite Susceptibility, Forward Modeling


Sign in / Sign up

Export Citation Format

Share Document