Effects of ZnO layer on anisotropy magnetoresistance of Ni81Fe19 films

2014 ◽  
Vol 28 (06) ◽  
pp. 1450043 ◽  
Author(s):  
Shuyun Wang ◽  
Yuanmei Gao ◽  
Tiejun Gao ◽  
Yuan He ◽  
Hui Zhang ◽  
...  

A series of Ta (4 nm)/ ZnO (t nm )/ Ni 81 Fe 19 (20 nm)/ ZnO (t nm )/ Ta (3 nm) magnetic thin films were prepared on lower experimental conditions by magnetron sputtering method. Effects of ZnO layer thickness and substrate temperature on anisotropic magnetoresistance and magnetic properties of these Ni 81 Fe 19 films have been investigated. The experiment results show that the anisotropic magnetoresistance value of the Ni 81 Fe 19 film is enhanced with the increasing of the inserted ZnO layer thickness. When the ZnO thickness is 2 nm, the anisotropic magnetoresistance value achieves the maximum. In addition, the anisotropic magnetoresistance of the Ni 81 Fe 19 film is also enhanced with the increasing of substrate temperature, and when the temperature is 450°C, the anisotropic magnetoresistance reaches the maximum. The anisotropic magnetoresistance value of 20 nm Ni 81 Fe 19 films with 2 nm ZnO layer can achieve 3.63% at 450°C which is enhanced 11.6% compare with the films without ZnO layer.

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 348 ◽  
Author(s):  
Evgeniya A. Mikhalitsyna ◽  
Vasiliy A. Kataev ◽  
Aitor Larrañaga ◽  
Vladimir N. Lepalovskij ◽  
Galina V. Kurlyandskaya

A growing variety of microelectronic devices and magnetic field sensors as well as a trend of miniaturization demands the development of low-dimensional magnetic materials and nanostructures. Among them, soft magnetic thin films of Finemet alloys are appropriate materials for sensor and actuator devices. Therefore, one of the important directions of the research is the optimization of thin film magnetic properties. In this study, the structural transformations of the Fe73.5Nb3Cu1Si13.5B9 and Fe72.5Nb1.5Mo2Cu1.1Si14.2B8.7 films of 100, 150 and 200 nm thicknesses were comparatively analyzed together with their magnetic properties and magnetic anisotropy. The thin films were prepared using the ion-plasma sputtering technique. The crystallization process was studied by certified X-ray diffraction (XRD) methods. The kinetics of crystallization was observed due to the temperature X-ray diffraction (TDX) analysis. Magnetic properties of the films were studied by the magneto-optical Kerr microscopy. Based on the TDX data the delay of the onset crystallization of the films with its thickness decreasing was shown. Furthermore, the onset crystallization of the 150 and 200 nm films began at the temperature of about 400–420 °C showing rapid grain growth up to the size of 16–20 nm. The best magnetic properties of the films were formed after crystallization after the heat treatment at 350–400 °C when the stress relaxation took place.


2018 ◽  
Vol 453 ◽  
pp. 211-219 ◽  
Author(s):  
Rachid Hida ◽  
Claudiu V. Falub ◽  
Sandrine Perraudeau ◽  
Christine Morin ◽  
Sylvie Favier ◽  
...  

CrystEngComm ◽  
2014 ◽  
Vol 16 (40) ◽  
pp. 9528-9533 ◽  
Author(s):  
M. Abuín ◽  
L. Pérez ◽  
A. Mascaraque ◽  
M. Maicas

Changes in coercivity and atomic distances (EXAFS) of 20 nm Fe53Co47 thin films grown by DC and PCD magnetron sputtering.


2016 ◽  
Vol 30 (07) ◽  
pp. 1650072
Author(s):  
Shuyun Wang ◽  
Huaxue Huang ◽  
Yang Sun ◽  
Tiejun Gao ◽  
Yuan He

A series of Ta(4 nm)/Y2O[Formula: see text]/Ni[Formula: see text]Fe[Formula: see text](20 nm)/Y2O[Formula: see text]/Ta(3 nm) films were prepared on glass substrates by magnetron sputtering under appropriate conditions. AMR value, phase composition and magnetic hysteresis hoop of Ni[Formula: see text]Fe[Formula: see text] films were measured and analyzed by four-point probe technology, X-ray diffraction (XRD) and vibrating sample magnetometer (VSM), respectively. Influence of Y2O3 which work as oxidation intercalation on AMR values of Ni[Formula: see text]Fe[Formula: see text] films was investigated. The experiment results show that, at the substrate temperature of 450[Formula: see text]C, the AMR value of the film with Y2O3 layer thickness of 2.5 nm can reach 4.61%, increasing by 71.3% compares with the film without Y2O3 layer.


2013 ◽  
Vol 690-693 ◽  
pp. 1702-1706 ◽  
Author(s):  
Shuang Jun Nie ◽  
Hao Geng ◽  
Jun Bao Wang ◽  
Lai Sen Wang ◽  
Zhen Wei Wang ◽  
...  

NiZn-ferrite thin films were deposited onto silicon and glass substrates by radio frequency magnetron sputtering at room temperature. The effects of the relative oxygen flow ratio on the structure and magnetic properties of the thin films were investigated. The study results reveal that the films deposited under higher relative oxygen flow ratio show a better crystallinity. Static magnetic measurement results indicated that the saturation magnetization of the films was greatly affected by the crystallinity, grain dimension, and cation distribution in the NiZn-ferrite films. The NiZn-ferrite thin films with a maximum saturation magnetization of 151 emucm-3, which is about 40% of the bulk NiZn ferrite, was obtained under relative oxygen flow ratio of 60%.


1996 ◽  
Vol 457 ◽  
Author(s):  
R. Banerjee ◽  
X. D. Zhang ◽  
S. A. Dregia ◽  
H. L. Fraser

ABSTRACTNanocomposite Ti/Al multilayered thin films have been deposited by magnetron sputtering. These multilayers exhibit interesting structural transitions on reducing the layer thickness of both Ti and Al. Ti transforms from its bulk stable hep structure to fee and Al transforms from fee to hep. The effect of ratio of Ti layer thickness to Al layer thickness on the structural transitions has been investigated for a constant bilayer periodicity of 10 nm by considering three different multilayers: 7.5 nm Ti / 2.5 nm Al, 5 nm Ti / 5 nm Al and 2.5 nm Ti / 7.5 nm Al. The experimental results have been qualitatively explained on the basis of a thermodynamic model. Preliminary experimental results of interfacial reactions in Ti/Al bilayers resulting in the formation of Ti-aluminides are also presented in the paper.


Sign in / Sign up

Export Citation Format

Share Document