Sobolev orthogonal polynomials generated by modified Laguerre polynomials and the Cauchy problem for ODE systems

Author(s):  
Idris Sharapudinov ◽  
Timur Sharapudinov
Author(s):  
Gasan Akniyev ◽  
Ramis Gadzhimirzaev

In this paper, we consider a numerical realization of an iterative method for solving the Cauchy problem for ordinary differential equations, based on representing the solution in the form of a Fourier series by the system of polynomials $\{L_{1,n}(x;b)\}_{n=0}^\infty$, orthonormal with respect to the Sobolev-type inner product $$ \langle f,g\rangle=f(0)g(0)+\int_{0}^\infty f'(x)g'(x)\rho(x;b)dx $$ and generated by the system of modified Laguerre polynomials $\{L_{n}(x;b)\}_{n=0}^\infty$, where $b>0$. In the approximate calculation of the Fourier coefficients of the desired solution, the Gauss -- Laguerre quadrature formula is used.


Author(s):  
Levon K. Babadzanjanz ◽  
◽  
Irina Yu. Pototskaya ◽  
Yulia Yu. Pupysheva ◽  
◽  
...  

Many of total systems of PDEs can be reduced to the polynomial form. As was shown by various authors, one of the best methods for the numerical solution of the initial value problem for ODE systems is the Taylor Series Method (TSM). In the article, the authors consider the Cauchy problem for the total polynomial PDE system, obtain the recurrence formulas for Taylor coefficients, and then formulate and prove a theorem on the accuracy of its solutions by TSM.


2003 ◽  
Vol 8 (1) ◽  
pp. 61-75
Author(s):  
V. Litovchenko

The well-posedness of the Cauchy problem, mentioned in title, is studied. The main result means that the solution of this problem is usual C∞ - function on the space argument, if the initial function is a real functional on the conjugate space to the space, containing the fundamental solution of the corresponding problem. The basic tool for the proof is the functional analysis technique.


Filomat ◽  
2017 ◽  
Vol 31 (5) ◽  
pp. 1287-1293 ◽  
Author(s):  
Zujin Zhang ◽  
Dingxing Zhong ◽  
Shujing Gao ◽  
Shulin Qiu

In this paper, we consider the Cauchy problem for the 3D MHD fluid passing through the porous medium, and provide some fundamental Serrin type regularity criteria involving the velocity or its gradient, the pressure or its gradient. This extends and improves [S. Rahman, Regularity criterion for 3D MHD fluid passing through the porous medium in terms of gradient pressure, J. Comput. Appl. Math., 270 (2014), 88-99].


Sign in / Sign up

Export Citation Format

Share Document