An eigenvalue problem for tensors used in mechanics and the number of independent Saint-Venant strain compatibility conditions

2017 ◽  
Vol 72 (3) ◽  
pp. 66-69 ◽  
Author(s):  
M. U. Nikabadze
2011 ◽  
Vol 467-469 ◽  
pp. 275-278
Author(s):  
Shiuh Chuan Her ◽  
Chin Hsien Lin

Analytical model based on the Bernoulli beam theory and strain compatibility conditions at the interfaces between the two layers have been developed to predict the distribution of thermal stresses within the multi-layered structure due to the mismatch of thermal expansion. The closed-form solution of thermal stresses related to the material properties and geometry were obtained. It is useful to provide a simple and efficient analytical model, so that the stress level in the layers can be accurately estimated. The analytical results are compared with finite element results. Good agreement demonstrates that the proposed approach is able to provide an efficient way for the calculation of the thermal stresses.


2006 ◽  
Vol 11 (1) ◽  
pp. 13-32 ◽  
Author(s):  
B. Bandyrskii ◽  
I. Lazurchak ◽  
V. Makarov ◽  
M. Sapagovas

The paper deals with numerical methods for eigenvalue problem for the second order ordinary differential operator with variable coefficient subject to nonlocal integral condition. FD-method (functional-discrete method) is derived and analyzed for calculating of eigenvalues, particulary complex eigenvalues. The convergence of FD-method is proved. Finally numerical procedures are suggested and computational results are schown.


Sign in / Sign up

Export Citation Format

Share Document