Maintenance of Oscillations in Three-Dimensional Traveling Waves in Plane Poiseuille Flows

2018 ◽  
Vol 73 (4) ◽  
pp. 91-96 ◽  
Author(s):  
V. O. Pimanov
1991 ◽  
Vol 01 (04) ◽  
pp. 723-744 ◽  
Author(s):  
JOHN J. TYSON ◽  
STEVEN H. STROGATZ

Traveling waves of excitation organize physical, chemical, and biological systems in space and time. In the biological context they serve to communicate information rapidly over long distances and to coordinate the activity of tissues and organs. An example of particular beauty, complexity and importance is the three-dimensional rotating scroll wave observed in the Belousov–Zhabotinskii reaction and in the ventricle of the heart. A scroll wave rotates around a filamentous phase singularity that weaves through the three-dimensional medium. At any instant of time the geometry of the scroll wave can be reduced to the spatial arrangement of a ribbon whose edges are the singular filament and the tip of the scroll wave. This ribbon, when it closes on itself, must satisfy the topological constraint L = Tw + Wr, where L is the linking number of the two edges of the ribbon, Tw is the total twist of the ribbon, and Wr is the writhing number of the singular filament. We discuss the origin of this equation and its implications for scroll wave statics and dynamics.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Bayode E. Owolabi ◽  
David J. C. Dennis ◽  
Robert J. Poole

In this study, we examine the development length requirements for laminar Couette–Poiseuille flows in a two-dimensional (2D) channel as well as in the three-dimensional (3D) case of flow through a square duct, using a combination of numerical and experimental approaches. The parameter space investigated covers wall to bulk velocity ratios, r, spanning from 0 (purely pressure-driven flow) to 2 (purely wall driven-flow; 4 in the case of a square duct) and a wide range of Reynolds numbers (Re). The results indicate an increase in the development length (L) with r. Consistent with the findings of Durst et al. (2005, “The Development Lengths of Laminar Pipe and Channel Flows,” ASME J. Fluids Eng., 127(6), pp. 1154–1160), L was observed to be of the order of the channel height in the limit as Re→0, irrespective of the condition at the inlet. This, however, changes at high Reynolds numbers, with L increasing linearly with Re. In all the cases considered, a uniform velocity profile at the inlet was found to result in longer entry lengths than in a flow developing from a parabolic inlet profile. We show that this inlet effect becomes less important as the limit of purely wall-driven flow is approached. Finally, we develop correlations for predicting L in these flows and, for the first time, also present laser Doppler velocimetry (LDV) measurements of the developing as well as fully-developed velocity profiles, and observe good agreement between experiment, analytical solution, and numerical simulation results in the 3D case.


2019 ◽  
Vol 33 (32) ◽  
pp. 1950402 ◽  
Author(s):  
Behzad Ghanbari ◽  
J. F. Gómez-Aguilar

In this paper, the generalized exponential rational function method is applied to obtain analytical solutions for the nonlinear Radhakrishnan–Kundu–Lakshmanan equation. We obtain novel soliton, traveling waves and kink-type solutions with complex structures. We also present the two- and three-dimensional shapes for the real and imaginary part of the solutions obtained. It is illustrated that generalized exponential rational function method (GERFM) is simple and efficient method to reach the various type of the soliton solutions.


Crystals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 217 ◽  
Author(s):  
Jia-Jia Yu ◽  
Lu Zhang ◽  
Ting Shen ◽  
Li Zhang ◽  
You-Rong Li

A series of three-dimensional numerical simulations were performed to understand the thermal-solutal capillary-buoyancy flow of Ge1-xSix melts during Czochralski crystal growth with a rotating crystal or crucible. The crystal and crucible rotation Reynolds numbers in this work are 0∼3.5 × 103 (0∼4.4 rpm) and 0∼−2.4 × 103 (0∼−1.5 rpm), respectively. Simulation results show that if the thermal capillary Reynolds number is relatively low, the flow will be steady and axisymmetric, even though the crystal or crucible rotates at a constant rate. The critical thermal capillary Reynolds number for the initiation of the three-dimensional oscillatory flow is larger than that of pure fluids. As the crystal or crucible rotation rate increases, the critical thermal capillary Reynolds number first increases and then decreases. The dominant flow pattern after the flow destabilization is azimuthal traveling waves. Furthermore, a reversed evolution from the oscillatory spoke pattern to traveling waves appears in the melt. Once the crystal or crucible rotation rate is relatively large, the traveling waves respectively evolve to rotating waves at the crystal rotation and a spindle-like pattern at the crucible rotation. In addition, the maximum amplitude of solute concentration oscillation on the free surface initially decreases, but finally rises with the crystal or crucible rotation rate increasing.


Sign in / Sign up

Export Citation Format

Share Document