Entry Length Requirements for Two- and Three-Dimensional Laminar Couette–Poiseuille Flows

2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Bayode E. Owolabi ◽  
David J. C. Dennis ◽  
Robert J. Poole

In this study, we examine the development length requirements for laminar Couette–Poiseuille flows in a two-dimensional (2D) channel as well as in the three-dimensional (3D) case of flow through a square duct, using a combination of numerical and experimental approaches. The parameter space investigated covers wall to bulk velocity ratios, r, spanning from 0 (purely pressure-driven flow) to 2 (purely wall driven-flow; 4 in the case of a square duct) and a wide range of Reynolds numbers (Re). The results indicate an increase in the development length (L) with r. Consistent with the findings of Durst et al. (2005, “The Development Lengths of Laminar Pipe and Channel Flows,” ASME J. Fluids Eng., 127(6), pp. 1154–1160), L was observed to be of the order of the channel height in the limit as Re→0, irrespective of the condition at the inlet. This, however, changes at high Reynolds numbers, with L increasing linearly with Re. In all the cases considered, a uniform velocity profile at the inlet was found to result in longer entry lengths than in a flow developing from a parabolic inlet profile. We show that this inlet effect becomes less important as the limit of purely wall-driven flow is approached. Finally, we develop correlations for predicting L in these flows and, for the first time, also present laser Doppler velocimetry (LDV) measurements of the developing as well as fully-developed velocity profiles, and observe good agreement between experiment, analytical solution, and numerical simulation results in the 3D case.

2012 ◽  
Vol 708 ◽  
pp. 45-70 ◽  
Author(s):  
A. Mashayek ◽  
W. R. Peltier

AbstractThe linear stability analyses described in Mashayek & Peltier (J. Fluid Mech., vol. 708, 2012, 5–44, hereafter MP1) are extended herein in an investigation of the influence of stratification on the evolution of secondary instabilities to which an evolving Kelvin–Helmholtz (KH) wave is susceptible in an initially unstable parallel stratified shear layer. We show that over a wide range of background stratification levels, the braid shear instability has a higher probability of emerging at early stages of the flow evolution while the secondary convective instability (SCI), which occurs in the eyelids of the individual Kelvin ‘cats eyes’, will remain a relevant and dominant instability at high Reynolds numbers. The evolution of both modes is greatly influenced by the background stratification. Various other three-dimensional secondary instabilities are found to exist over a wide range of stratification levels. In particular, the stagnation point instability (SPI), which was discussed in detail in MP1, may be of great potential importance providing alternate routes for transition of an initially two-dimensional KH wave into fully developed turbulence. The energetics of the secondary instabilities revealed by our simulations are analysed in detail and the preturbulent mixing properties are studied.


2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


2008 ◽  
Vol 615 ◽  
pp. 371-399 ◽  
Author(s):  
S. DONG

We report three-dimensional direct numerical simulations of the turbulent flow between counter-rotating concentric cylinders with a radius ratio 0.5. The inner- and outer-cylinder Reynolds numbers have the same magnitude, which ranges from 500 to 4000 in the simulations. We show that with the increase of Reynolds number, the prevailing structures in the flow are azimuthal vortices with scales much smaller than the cylinder gap. At high Reynolds numbers, while the instantaneous small-scale vortices permeate the entire domain, the large-scale Taylor vortex motions manifested by the time-averaged field do not penetrate a layer of fluid near the outer cylinder. Comparisons between the standard Taylor–Couette system (rotating inner cylinder, fixed outer cylinder) and the counter-rotating system demonstrate the profound effects of the Coriolis force on the mean flow and other statistical quantities. The dynamical and statistical features of the flow have been investigated in detail.


2011 ◽  
Vol 6 (4) ◽  
pp. 51-54
Author(s):  
Evgeny Chinnov ◽  
Sergey Abdurakipov

An experimental study of thermal entry length in falling liquid films at high Reynolds numbers was performed with the use of field methods for thickness and temperature measuring. It was shown that the combination of the strong wave and thermocapillary effects leads to a significant decrease of thermal entry length


1978 ◽  
Vol 88 (3) ◽  
pp. 451-463 ◽  
Author(s):  
A. E. Perry ◽  
T. T. Lim

By applying small lateral oscillations to a glass tube from which smoke was issuing, perfectly periodic coflowing jets and wake structures were produced at Reynolds numbers of order 300-1000. These structures remained coherent over long streamwise distances and appeared to be perfectly frozen when viewed under stroboscopic light which was synchronized with the disturbing oscillation. By the use of strobing laser beams, longitudinal sections of the structures were photographed and an account of the geometry of these structures is reported.When the tube was unforced, similar structures occurred but they modulated in scale and frequency, and their orientation was random.A classification of structures is presented and examples are demonstrated in naturally occurring situations such as smoke from a cigarette, the wake behind a three-dimensional blunt body, and the high Reynolds number flow in a plume from a chimney. It is suggested that an examination of these structures may give some insight into the large-scale motion in fully turbulent flow.


2016 ◽  
Author(s):  
Guilherme Feitosa Rosetti ◽  
Guilherme Vaz ◽  
André Luís Condino Fujarra

The cylinder flow is a canonical problem for Computational Fluid Dynamics (CFD), as it can display several of the most relevant issues for a wide class of flows, such as boundary layer separation, vortex shedding, flow instabilities, laminar-turbulent transition and others. Several applications also display these features justifying the amount of energy invested in studying this problem in a wide range of Reynolds numbers. The Unsteady Reynolds Averaged Navier Stokes (URANS) equations combined with simplifying assumptions for turbulence have been shown inappropriate for the captive cylinder flow in an important range of Reynolds numbers. For that reason, recent improvements in turbulence modeling has been one of the most important lines of research within that issue, aiming at better prediction of flow and loads, mainly targeting the three-dimensional effects and laminar-turbulent transition, which are so important for blunt bodies. In contrast, a much smaller amount of work is observed concerning the investigation of turbulent effects when the cylinder moves with driven or free motions. Evidently, larger understanding of the contribution of turbulence in those situations can lead to more precise mathematical and numerical modeling of the flow around a moving cylinder. In this paper, we present CFD calculations in a range of moderate Reynolds numbers with different turbulence models and considering a cylinder in captive condition, in driven and in free motions. The results corroborate an intuitive notion that the inertial effects indeed play very important role in determining loads and motions. The flow also seems to adapt to the motions in such a way that vortices are more correlated and less influenced by turbulence effects. Due to good comparison of the numerical and experimental results for the moving-cylinder cases, it is observed that the choice of turbulence model for driven and free motions calculations is markedly less decisive than for the captive cylinder case.


2011 ◽  
Vol 57 (205) ◽  
pp. 811-816 ◽  
Author(s):  
Emilie Zermatten ◽  
Sophia Haussener ◽  
Martin Schneebeli ◽  
Aldo Steinfeld

AbstractA tomography-based methodology for the mass transport characterization of snow is presented. Five samples, characteristic for a wide range of seasonal snow, are considered. Their three-dimensional (3-D) geometrical representations are obtained by micro-computed tomography and used in direct pore-level simulations to numerically solve the governing mass and momentum conservation equations, allowing for the determination of their effective permeability and Dupuit–Forchheimer coefficient. The extension to the Dupuit–coefficient is useful near the snow surface, where Reynolds numbers higher than unity can appear. Simplified semi-empirical models of porous media are also examined. The methodology presented allows for the determination of snow’s effective mass transport properties, which are strongly dependent on the snow microstructure and morphology. These effective properties can, in turn, readily be used in snowpack volume-averaged (continuum) models such as strongly layered samples with macroscopically anisotropic properties.


2012 ◽  
Vol 694 ◽  
pp. 225-251 ◽  
Author(s):  
Carlo Camporeale ◽  
Luca Ridolfi

AbstractA free-surface-induced morphological instability is studied in the laminar regime at large Reynolds numbers ($\mathit{Re}= 1\text{{\ndash}} 1{0}^{3} $) and on sub-horizontal walls ($\vartheta \lt 3{0}^{\ensuremath{\circ} } $). We analytically and numerically develop the stability analysis of an inclined melting–freezing interface bounding a free-surface laminar flow. The complete solution of both the linearized flow field and the heat conservation equations allows the exact derivation of the upper and lower temperature gradients at the interface, as required by the Stefan condition, from which the dispersion relationship is obtained. The eigenstructure is obtained and discussed. Free-surface dynamics appears to be crucial for the triggering of upstream propagating ice ripples, which grow at the liquid–solid interface. The kinematic and the dynamic conditions play a key role in controlling the formation of the free-surface fluctuations; these latter induce a streamline distortion with an increment of the wall-normal velocities and a destabilizing phase shift in the net heat transfer to the interface. Three-dimensional effects appear to be crucial at high Reynolds numbers. The role of inertia forces, vorticity, and thermal boundary conditions are also discussed.


Sign in / Sign up

Export Citation Format

Share Document