scholarly journals Application of the wavelet phase method of signal study to the analysis of asymmetric barycentric motions of the Sun and changes in processes occurring on the Sun, near-earth space and in the interior of the Earth

2021 ◽  
Vol 16 (3) ◽  
pp. 7-35
Author(s):  
Valeriy I. Alekseev

A set of studies has been carried out, indicating that solar activity and processes associated with the activity of the Sun: changes in the main magnetic fluxes, areas of polar spots, the number of polar torches at the poles of the Sun; -index of geomagnetic activity and -index of the ratio of plasma pressure to magnetic solar wind (SW), slow and high-speed flows of SW, cosmic ray intensity (CR); average annual values of the interplanetary magnetic field vector and its components; the temperature, density, and flow rate of the SW plasma, the synodic period of the revolution of the Sun as a star, and the radius of the Sun in relative units; the distance of the Earths geographic pole from the conventional international origin, the rate of change of the position of the Earths north magnetic pole, the main ionospheric parameters; the angle of the Earth's axis of rotation and volcanic eruptions; asymmetric movement of the Sun around the solar system of the solar system (in fractions of the solar radius); the distances from the solar systems CM to the Sun in km, the distances from the solar systems CM to the Earth, with high accuracy, are consistent with the movement of the Sun relative to the barycenter. The research is based on the wavelet transformation of the observations listed above variables in various time intervals with the subsequent calculation of their phase-frequency and phase-time characteristics, correlation matrices between characteristics. The studied variables are divided into groups, which include the barycentric movement of the Sun and changes in solar activity. The calculated two correlation matrices of the wavelet characteristics of the group of variables and the graphs of these characteristics in two coordinate systems reflect the consistency of changes in the group. The studies carried out indicate that the thermonuclear reaction occurring in the interior of the Sun, the external manifestation of which is solar activity, is controlled by the movements of the large planets of the Solar System relative to the Sun.

Author(s):  
Arnon Dar

Changes in the solar neighbourhood due to the motion of the sun in the Galaxy, solar evolution, and Galactic stellar evolution influence the terrestrial environment and expose life on the Earth to cosmic hazards. Such cosmic hazards include impact of near-Earth objects (NEOs), global climatic changes due to variations in solar activity and exposure of the Earth to very large fluxes of radiations and cosmic rays from Galactic supernova (SN) explosions and gamma-ray bursts (GRBs). Such cosmic hazards are of low probability, but their influence on the terrestrial environment and their catastrophic consequences, as evident from geological records, justify their detailed study, and the development of rational strategies, which may minimize their threat to life and to the survival of the human race on this planet. In this chapter I shall concentrate on threats to life from increased levels of radiation and cosmic ray (CR) flux that reach the atmosphere as a result of (1) changes in solar luminosity, (2) changes in the solar environment owing to the motion of the sun around the Galactic centre and in particular, owing to its passage through the spiral arms of the Galaxy, (3) the oscillatory displacement of the solar system perpendicular to the Galactic plane, (4) solar activity, (5) Galactic SN explosions, (6) GRBs, and (7) cosmic ray bursts (CRBs). The credibility of various cosmic threats will be tested by examining whether such events could have caused some of the major mass extinctions that took place on planet Earth and were documented relatively well in the geological records of the past 500 million years (Myr). A credible claim of a global threat to life from a change in global irradiation must first demonstrate that the anticipated change is larger than the periodical changes in irradiation caused by the motions of the Earth, to which terrestrial life has adjusted itself. Most of the energy of the sun is radiated in the visible range. The atmosphere is highly transparent to this visible light but is very opaque to almost all other bands of the electromagnetic spectrum except radio waves, whose production by the sun is rather small.


Author(s):  
David Ehrenfeld

At the end of the Cretaceous period, the last dinosaurs disappeared from the earth, setting off an evolutionary jubilee among the Milquetoast-like mammals that survived them, and preparing the ground for what was to become, 65 million years later, a permanent source of gainful occupation for scientists whose job it is to wonder why the dinosaurs died out. Scores of reasons have been given for this remarkable concatenation of extinctions. Global climate and sea level were changed by a city-sized asteroid striking the earth near what is now the Yucatan, or by a massive set of volcanic eruptions, or by the solar system passing through the core of a giant molecular cloud, perhaps colliding with a supercomet loosened from the Oort cluster, which orbits the Sun beyond Pluto. Theories of catastrophic extinction abound. Some of the most daring even conjure up the specter of an unseen companion star to our Sun, named Nemesis, whose eccentric orbit brings a wave of potentially deadly comet showers—and extinctions—every 26 million years. But there are also paleontologists who argue that the dinosaurs went away gradually, not suddenly, over a period of millions of years, and that toward the end they coexisted with the earliest hooved mammals, including ancestors of horses, cows, and sheep. If extinction was gradual, a different line of thought opens up: perhaps the dinosaurs died out because they couldn’t adapt and compete in a changing world. The big lummoxes were obsolete. I heard about the dinosaurs’ obsolescence back in my student days. It was as satisfying a notion then as it is today, especially if you didn’t think about it too hard. Here were these lumbering, pea-brained reptiles, barely able to walk and chew gum at the same time, while all around and underneath them, cleverly hiding behind clumps of primitive vegetation and cleverly burrowing in tunnels in the ground, were the nerdy but smart little mammals about to emerge from the shadows and begin their ascent to glory—somewhat, it occurs to me now, like Bill Gates in the waning days of heavy manufacturing.


2019 ◽  
Vol 2 (1) ◽  
pp. 27-35
Author(s):  
Anisa Nur Afida ◽  
Yuberti Yuberti ◽  
Mukarramah Mustari

Abstract: This study aims to determine the function of the sun in the perspective of science and al-Qur'an . The research method used is qualitative research methods with the type of research library (Library Research). This research applies data analysis technique of Milles and Huberman model, with steps: 1) data reduction; 2) data display; 3) verification. The result of this research is, the theories that science explain related to the function of the sun in accordance with what is also described in the Qur'an. Science explains that the sun as the greatest source of light for the earth can produce its own energy. This is explained in the Qur'an that the sun is described as siraj and dhiya' which means sunlight is sourced from itself, as the center of the solar system is not static but also moves this matter in the Qur'an explained in QS Yāsin verse 38, besides science and the Qur'an also equally explain that the sun can be made as a calculation of time.Abstrak: Penelitian ini bertujuan untuk mengetahui fungsi matahari dalam perspektif sains dan al-Qur’an..Metode penelitian yang digunakan yaitu metode penelitian kualitatif dengan jenis penelitian pustaka (Library Research). Penelitian ini menggunakan teknik analisis data model Milles dan Huberman, dengan langkah-langkah: 1) reduksi data; 2) display data; 3) verifikasi. Hasil dari penelitian ini yaitu, teori-teori yang sains jelaskan berkaitan dengan fungsi matahari sesuai dengan apa yang juga di jelaskan dalam al-Qur’an. Sains menjelaskan bahwa matahari sebagai sumber energi cahaya terbesar bagi bumi dapat menghasilkan energinya sendiri hal ini dijelaskan dalam al-Qur’an bahwa matahari dideskripsikan sebagai siraj dan dhiya’yang berarti sinar matahari bersumber dari dirinya sendiri, sebagai pusat tata surya matahari tidaklah statis melainkan juga bergerak hal ini dalam al-Qur’an di jelaskan dalam QS Yāsin ayat 38, selain itu sains dan al-Qur’an juga sama-sama menjelaskan bahwa matahari  dapat di jadikan sebagai perhitungan waktu serta petunjuk dari bayang-bayang.


2021 ◽  
Vol 44 ◽  
pp. 100-106
Author(s):  
A.K. Singh ◽  
◽  
A. Bhargawa ◽  

Solar-terrestrial environment is manifested primarily by the physical conditions of solar interior, solar atmosphere and eruptive solar plasma. Each parameter gives unique information about the Sun and its activity according to its defined characteristics. Hence the variability of solar parameters is of interest from the point of view of plasma dynamics on the Sun and in the interplanetary space as well as for the solar-terrestrial physics. In this study, we have analysed various solar transients and parameters to establish the recent trends of solar activity during solar cycles 21, 22, 23 and 24. The correlation coefficients of linear regression of F10.7 cm index, Lyman alpha index, Mg II index, cosmic ray intensity, number of M & X class flares and coronal mass ejections (CMEs) occurrence rate versus sunspot number was examined for last four solar cycles. A running cross-correlation method has been used to study the momentary relationship among the above mentioned solar activity parameters. Solar cycle 21 witnessed the highest value of correlation for F10.7 cm index, Lyman alpha index and number of M-class and X-class flares versus sunspot number among all the considered solar cycles which were 0.979, 0.935 and 0.964 respectively. Solar cycle 22 recorded the highest correlation in case of Mg II index, Ap index and CMEs occurrence rate versus sunspot number among all the considered solar cycles (0.964, 0.384 and 0.972 respectively). Solar cycle 23 and 24 did not witness any highest correlation compared to solar cycle 21 and 22. Further the record values (highest value compared to other solar three cycles) of each solar activity parameters for each of the four solar cycles have been studied. Here solar cycle 24 has no record text at all, this simply indicating that this cycle was a weakest cycle compared to the three previous ones. We have concluded that in every domain solar 24 was weaker to its three predecessors.


1968 ◽  
Vol 1 (4) ◽  
pp. 154-157
Author(s):  
D. J. Cooke ◽  
A. G. Fenton

Primary cosmic rays passing through the solar system carry with them valuable information about solar and astrophysical phenomena in the form of intensity and spectral variations. In order that this information be efficiently extracted from observations of the directional cosmic-ray flux at the surface of the Earth, it is essential to have accurate information available to enable the relating of the observed secondary cosmic-ray directions of motion and intensity to those outside the range of the disturbing terrestrial influences.


2020 ◽  
Vol 633 ◽  
pp. A83
Author(s):  
J. Becker Tjus ◽  
P. Desiati ◽  
N. Döpper ◽  
H. Fichtner ◽  
J. Kleimann ◽  
...  

The cosmic-ray Sun shadow, which is caused by high-energy charged cosmic rays being blocked and deflected by the Sun and its magnetic field, has been observed by various experiments, such as Argo-YBJ, Tibet, HAWC, and IceCube. Most notably, the shadow’s size and depth was recently shown to correlate with the 11-year solar cycle. The interpretation of such measurements, which help to bridge the gap between solar physics and high-energy particle astrophysics, requires a solid theoretical understanding of cosmic-ray propagation in the coronal magnetic field. It is the aim of this paper to establish theoretical predictions for the cosmic-ray Sun shadow in order to identify observables that can be used to study this link in more detail. To determine the cosmic-ray Sun shadow, we numerically compute trajectories of charged cosmic rays in the energy range of 5−316 TeV for five different mass numbers. We present and analyze the resulting shadow images for protons and iron, as well as for typically measured cosmic-ray compositions. We confirm the observationally established correlation between the magnitude of the shadowing effect and both the mean sunspot number and the polarity of the magnetic field during the solar cycle. We also show that during low solar activity, the Sun’s shadow behaves similarly to that of a dipole, for which we find a non-monotonous dependence on energy. In particular, the shadow can become significantly more pronounced than the geometrical disk expected for a totally unmagnetized Sun. For times of high solar activity, we instead predict the shadow to depend monotonously on energy and to be generally weaker than the geometrical shadow for all tested energies. These effects should become visible in energy-resolved measurements of the Sun shadow, and may in the future become an independent measure for the level of disorder in the solar magnetic field.


Radiocarbon ◽  
1980 ◽  
Vol 22 (2) ◽  
pp. 133-158 ◽  
Author(s):  
Giuliana Castagnoli ◽  
Devendra Lal

This paper is concerned with the expected deviations in the production rate of natural 14C on the earth due to changes in solar activity. We review the published estimates of the global production rates of 14C due to galactic and solar cosmic ray particles, and present new estimates of the expected secular variations in 14C production, taking into account the latest information available on galactic cosmic ray modulation and long-term variations in solar activity.


Author(s):  
Chongrui Du ◽  
O.L. Starinova

The tasks of studying the Moon require long-term functioning space systems. Most of the low selenocentric orbits are known to be unstable, which requires a propellant to maintain the orbital structure. For these orbits, the main disturbing factors are the off-center gravitational field of the Moon and the gravity of the Earth and the Sun. This paper analyzes the stability of low selenocentric orbits according to passive motion modeling and takes into account these main disturbing factors. We put forward a criterion for determining the stability of the orbit and used it to analyze the circular orbit of the Moon at an altitude of 100 kilometers. According to different initial data and different dates, we obtained ranges of the Moon’s orbits with good stability. At the same time, we analyzed the rate of change in the longitude of the ascending node, and found a stable low lunar orbit which can operate for a long time.


2015 ◽  
Vol 112 (14) ◽  
pp. 4214-4217 ◽  
Author(s):  
Konstantin Batygin ◽  
Greg Laughlin

The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System’s terrestrial planets, as well as the absence of planets with a < 0.4 AU. Jupiter’s inward migration entrained s ≳ 10−100 km planetesimals into low-order mean motion resonances, shepherding and exciting their orbits. The resulting collisional cascade generated a planetesimal disk that, evolving under gas drag, would have driven any preexisting short-period planets into the Sun. In this scenario, the Solar System’s terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution.


Antiquity ◽  
1963 ◽  
Vol 37 (147) ◽  
pp. 213-219 ◽  
Author(s):  
W. F. Libby

The first test of the accuracy of dates obtained by the radiocarbon technique was made by determining whether dates so obtained agreed with the historical dates for materials of known age (n. 1). The validity of the radiocarbon method continues to be an important question, especially in the light of the numerous results that have been accumulated and the greater precision of the technique during the past few years (n. 2).The radiocarbon content of the biosphere depends on three supposedly independent geophysical quantities: (i) the average cosmic ray intensity over a period of 8000 years (the average life of radiocarbon) as measured in our solar system but outside the earth's magnetic field (n. 1); (ii) the magnitude (but not the orientation, because of the relatively rapid mixing over the earth's surface) of the magnetic field in the vicinity of the earth, averaged over the same period (n. 1,3); and (iii) the degree of mixing of the oceans during the same period (n. 1). The question of the accuracy of radiocarbon dates therefore is of interest to geophysicists in general as well as to the archaeologists, geologists and historians who use the dates.Previous workers in this area (n. 1, 2) have reported some discrepancies, and it is the purpose here to consider the matter further.


Sign in / Sign up

Export Citation Format

Share Document