A Geometric Interpretation of the Effective Uniaxial Anisotropy Field in Magnetic Films

2018 ◽  
Vol 73 (1) ◽  
pp. 107-111
Author(s):  
V. I. Kozlov
2010 ◽  
Vol 160-162 ◽  
pp. 951-956
Author(s):  
Xu Yang ◽  
Lu Qian Gong ◽  
Liang Qiao ◽  
Tao Wang ◽  
Fa Shen Li

Fe-Co soft magnetic films with tuneable in-plane uniaxial anisotropy were successfully electrodeposited onto ITO conductive glass. The influence of composition and electrolyte temperature on in-plane magnetic anisotropy field was investigated. Our results show that the in-plane uniaxial anisotropy can be induced by a magnetic field applied in the film plane during electrodeposition. Fe-Co films with various Fe content in the range from 35 at.% to 53 at.% were obtained and the magnetic anisotropy field was very sensitive to the composition. Moreover, the influence of electrolyte temperature on magnetic anisotropy field was investigated and it was found that the in-plane uniaxial anisotropy field can be tuned by varying the electrolyte temperature from 5 to 40 oC.


Author(s):  
N. A. Ilyin ◽  
A. A. Klimov ◽  
N. Tiercelin ◽  
P. Pernod ◽  
E. D. Mishina ◽  
...  

The need to study ultrafast processes in magnetism is due to the prospects for creating ultrafast magnetic recording and ultrafast spintronic devices. In order to excite the magnetic subsystem femtosecond optical pulses are used. The excitement is manifested as in spin precession. In metals, the material is heated first due to significant optical absorption, and significant Joule losses occur. The most important task is to search for materials in which spin processes are excited without heating. Obvious candidates are weakly absorbing materials, such as ferrite garnets. However, the range of such materials and the range of their functionality are limited.The purpose of this work is to study the dynamics of systems with nonthermal mechanisms of spin precession excitation. Such excitation is possible in ferromagnetic / antiferromagnetic heterostructures with exchange interaction, provided that the recombination time of photocarriers is shorter than the time of heat diffusion. Multilayer TbCo / FeCo structures of the near IR range were investigated for a femtosecond optical pulse. The spin dynamics are compared with the direction of the wave vector of the exciting pulse along and perpendicular to the axis of easy magnetization of the structures (“easy axis” and “hard axis” geometry, respectively). It is shown that in case of “easy axis” geometry the determinative mechanism is the thermal interaction. When the system is exposed to an excitation pulse, this mechanism leads to a decrease in the projection of magnetization on the direction of propagation of the test beam. In case of “hard axis” geometry, the magnetization turns to the magnetic field at the initial stage. Then it precesses and relaxes to an equilibrium angular orientation. Such dynamics indicate a rapid recovery of the uniaxial anisotropy field after laser irradiation. The presented results demonstrate an ultrafast change in the magnetic anisotropy induced during the fabrication of the heterostructure under study, which may be of interest for optical control of the orientation of the magnetization.


2008 ◽  
Vol 8 (6) ◽  
pp. 2811-2826 ◽  
Author(s):  
G. N. Kakazei ◽  
T. Mewes ◽  
P. E. Wigen ◽  
P. C. Hammel ◽  
A. N. Slavin ◽  
...  

X-band ferromagnetic resonance (FMR) was used to characterize in-plane magnetic anisotropies in rectangular and square arrays of circular nickel and Permalloy microdots. In the case of a rectangular lattice, as interdot distances in one direction decrease, the in-plane uniaxial anisotropy field increases, in good agreement with a simple theory of magnetostatically interacting uniformly magnetized dots. In the case of a square lattice a four-fold anisotropy of the in-plane FMR field Hr was found when the interdot distance a gets comparable to the dot diameter D. This anisotropy, not expected in the case of uniformly magnetized dots, was explained by a non-uniform magnetization m(r) in a dot in response to dipolar forces in the patternedmagnetic structure. It is well described by an iterative solution of a continuous variation procedure. In the case of perpendicular magnetization multiple sharp resonance peaks were observed below the main FMR peak in all the samples, and the relative positions of these peaks were independent of the interdot separations. Quantitative description of the observed multiresonance FMR spectra was given using the dipole-exchange spin wave dispersion equation for a perpendicularly magnetized film where in-plane wave vector is quantized due to the finite dot radius, and the inhomogenetiy of the intradot static demagnetization field in the nonellipsoidal dot is taken into account. It was demonstrated that ferromagnetic resonance force microscopy (FMRFM) can be used to determine both local and global properties of patterned submicron ferromagnetic samples. Local spectroscopy together with the possibility to vary the tip-sample spacing enables the separation of those two contributions to a FMRFM spectrum. The global FMR properties of circular submicron dots determined using magnetic resonance force microscopy are in a good agreement with results obtained using conventional FMR and with theoretical descriptions.


1997 ◽  
Vol 70 (5) ◽  
pp. 664-666 ◽  
Author(s):  
De-Hua Han ◽  
Jian-Gang Zhu ◽  
Jack H. Judy ◽  
John M. Sivertsen

Sign in / Sign up

Export Citation Format

Share Document