Detection of determinate signals with a fixed false alarm probability in the case of autoregression model of interference with unknown parameters

2007 ◽  
Vol 50 (3) ◽  
pp. 156-160 ◽  
Author(s):  
V. S. Golikov ◽  
O. M. Lebedeva
2021 ◽  
Vol 503 (4) ◽  
pp. 5223-5231
Author(s):  
C F Zhang ◽  
J W Xu ◽  
Y P Men ◽  
X H Deng ◽  
Heng Xu ◽  
...  

ABSTRACT In this paper, we investigate the impact of correlated noise on fast radio burst (FRB) searching. We found that (1) the correlated noise significantly increases the false alarm probability; (2) the signal-to-noise ratios (S/N) of the false positives become higher; (3) the correlated noise also affects the pulse width distribution of false positives, and there will be more false positives with wider pulse width. We use 55-h observation for M82 galaxy carried out at Nanshan 26m radio telescope to demonstrate the application of the correlated noise modelling. The number of candidates and parameter distribution of the false positives can be reproduced with the modelling of correlated noise. We will also discuss a low S/N candidate detected in the observation, for which we demonstrate the method to evaluate the false alarm probability in the presence of correlated noise. Possible origins of the candidate are discussed, where two possible pictures, an M82-harboured giant pulse and a cosmological FRB, are both compatible with the observation.


2020 ◽  
Vol 501 (1) ◽  
pp. 701-712
Author(s):  
N Yonemaru ◽  
S Kuroyanagi ◽  
G Hobbs ◽  
K Takahashi ◽  
X-J Zhu ◽  
...  

ABSTRACT Cosmic strings are potential gravitational-wave (GW) sources that can be probed by pulsar timing arrays (PTAs). In this work we develop a detection algorithm for a GW burst from a cusp on a cosmic string, and apply it to Parkes PTA data. We find four events with a false alarm probability less than 1 per cent. However further investigation shows that all of these are likely to be spurious. As there are no convincing detections we place upper limits on the GW amplitude for different event durations. From these bounds we place limits on the cosmic string tension of Gμ ∼ 10−5, and highlight that this bound is independent from those obtained using other techniques. We discuss the physical implications of our results and the prospect of probing cosmic strings in the era of Square Kilometre Array.


2020 ◽  
Vol 642 ◽  
pp. A157 ◽  
Author(s):  
N. Meunier ◽  
A.-M. Lagrange

Context. The detectability of exoplanets and the determination of their projected mass in radial velocity are affected by stellar magnetic activity and photospheric dynamics. Among those processes, the effect of granulation, and even more so of supergranulation, has been shown to be significant in the solar case. The impact for other spectral types has not yet been characterised. Aims. Our study is aimed at quantifying the impact of these flows for other stars and estimating how such contributions affect their performance. Methods. We analysed a broad array of extended synthetic time series that model these processes to characterise the impact of these flows on exoplanet detection for main sequence stars with spectral types from F6 to K4. We focussed on Earth-mass planets orbiting within the habitable zone around those stars. We estimated the expected detection rates and detection limits, tested the tools that are typically applied to such observations, and performed blind tests. Results. We find that both granulation and supergranulation on these stars significantly affect planet mass characterisation in radial velocity when performing a follow-up of a transit detection: the uncertainties on these masses are sometimes below 20% for a 1 MEarth (for granulation alone or for low-mass stars), but they are much larger in other configurations (supergranulation, high-mass stars). For granulation and low levels of supergranulation, the detection rates are good for K and late G stars (if the number of points is large enough), but poor for more massive stars. The highest level of supergranulation leads to a very poor performance, even for K stars; this is both due to low detection rates and to high levels of false positives, even for a very dense temporal sampling over 10 yr. False positive levels estimated from standard false alarm probabilities sometimes significantly overestimate or underestimate the true level, depending on the number of points: it is, therefore, crucial to take this effect into account when analysing observations. Conclusions. We conclude that granulation and supergranulation significantly affect the performance of exoplanet detectability. Future works will focus on improving the following three aspects: decreasing the number of false positives, increasing detection rates, and improving the false alarm probability estimations from observations.


Author(s):  
С.Б. Егоров ◽  
Р.И. Горбачев

«Выбросовая» вероятностная модель работы обнаружителя в режиме ожидания сигнала, предложенная авторами в [1], использована для оценки влияния селекции выбросов по длительности на вероятность ложной тревоги. Флюктуационные выбросы помехового индикаторного процесса, превысившие пороги селекции по уровню и длительности, трактуются как редкие события на интервале ожидания сигнала, подчиняющиеся вероятностному закону Пуассона. При условии, что средний период следования ложных выбросов превышает интервал корреляции индикаторного процесса, получено соотношение между средним числом выбросов любой длительности и средним числом выбросов, превысивших пороговую длительность. На основании известных числовых и вероятностных характеристик выбросов нормального стационарного случайного процесса получен уравнения, связывающие относительные пороги селекции по уровню и длительности с вероятностью ложной тревоги на интервале ожидания сигнала. Предложена методика определения порога селекции по длительности для снижения порога селекции по уровню до заданной величины. «Emissional» probability model of the detector in stand-by mode proposed by the authors in [1], is intended for estimation of false alarm rate dependence from the value of time-selection threshold. Fluctuation emissions of the noise indicator process are interpreted as rare events correspond to Poisson distribution. Assuming that average rate of false alarms exceeds the correlation interval of indicator process, obtained equation between average number of false alarms of any duration and average number of false alarms exceed the time threshold. Based on known numerical and statistical characteristics of emissions of normal stationary random process obtained equations, relating time and level thresholds with false alarm probability on stand-by mode time interval. Also suggested a method of determining time threshold intended to reduce level threshold.


2012 ◽  
Vol 41 (9) ◽  
pp. 1113-1117 ◽  
Author(s):  
叶天语 YE Tianyu ◽  
蒋丽珍 JIANG Lizhen

2019 ◽  
Vol 8 (2) ◽  
pp. 28 ◽  
Author(s):  
Xiao-Li Hu ◽  
Pin-Han Ho ◽  
Limei Peng

In energy detection for cognitive radio spectrum sensing, the noise variance is usually assumed given, by which a threshold is set to guarantee a desired constant false alarm rate (CFAR) or a constant detection rate (CDR). However, in practical situations, the exact information of noise variance is generally unavailable to a certain extent due to the fact that the total noise consists of time-varying thermal noise, receiver noise, and environmental noise, etc. Hence, setting the thresholds by using an estimated noise variance may result in different false alarm probabilities from the desired ones. In this paper, we analyze the basic statistical properties of the false alarm probability by using estimated noise variance, and propose a method to obtain more suitable CFAR thresholds for energy detection. Specifically, we first come up with explicit descriptions on the expectations of the resultant probability, and then analyze the upper bounds of their variance. Based on these theoretical preparations, a new method for precisely obtaining the CFAR thresholds is proposed in order to assure that the expected false alarm probability can be as close to the predetermined as possible. All analytical results derived in this paper are testified by corresponding numerical experiments.


2019 ◽  
Vol 9 (21) ◽  
pp. 4634 ◽  
Author(s):  
Hai Huang ◽  
Jia Zhu ◽  
Junsheng Mu

Sensing strategy directly influences the sensing accuracy of a spectrum sensing scheme. As a result, the optimization of a sensing strategy appears to be of great significance for accuracy improvement in spectrum sensing. Motivated by this, a novel sensing strategy is proposed in this paper, where an improved tradeoff among detection probability, false-alarm probability and available throughput is obtained based on the energy detector. We provide the optimal sensing performance and exhibit its superiority in theory compared with the classical scheme. Finally, simulations validate the conclusions drawn in this paper.


2014 ◽  
Vol 1044-1045 ◽  
pp. 818-824
Author(s):  
Bo Fan Yang ◽  
Rui Wang ◽  
Gang Wang ◽  
Li Zhao

Aiming at signal detection of radar target, concerning about on the basis of the influence of SNR on detection probability when false alarm probability is given based on N-P criterion, a kind of multi-sensor fusion detection based on SNR is put forward. It can improve system’s detection probability under the condition of required false alarm probability in the detection of low SNR signal. The simulation results show that the detection performance is significantly increased, no matter fusion detection system is composed of same sensors working in the same working point or different sensors.


Sign in / Sign up

Export Citation Format

Share Document