scholarly journals A Novel Sensing Strategy Based on Energy Detector for Spectrum Sensing

2019 ◽  
Vol 9 (21) ◽  
pp. 4634 ◽  
Author(s):  
Hai Huang ◽  
Jia Zhu ◽  
Junsheng Mu

Sensing strategy directly influences the sensing accuracy of a spectrum sensing scheme. As a result, the optimization of a sensing strategy appears to be of great significance for accuracy improvement in spectrum sensing. Motivated by this, a novel sensing strategy is proposed in this paper, where an improved tradeoff among detection probability, false-alarm probability and available throughput is obtained based on the energy detector. We provide the optimal sensing performance and exhibit its superiority in theory compared with the classical scheme. Finally, simulations validate the conclusions drawn in this paper.

Author(s):  
Felipe G. M. Elias ◽  
Evelio M. G. Fernández

AbstractClosed-form expressions for the detection probability, the false alarm probability and the energy detector constant threshold are derived using approximations of the central chi-square and non-central chi-square distributions. The approximations used show closer proximity to the original functions when compared to the expressions used in the literature. The novel expressions allow gains up to 6% and 16% in terms of measured false alarm and miss-detection probability, respectively, if compared to the Central Limit Theorem approach. The throughput of cognitive network is also enhanced when these novel expressions are implemented, providing gains up to 9%. New equations are also presented that minimize the total error rate to obtain the detection threshold and the optimal number of samples. The analytical results match the results of the simulation for a wide range of SNR values.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Daniele Borio ◽  
Emanuele Angiuli ◽  
Raimondo Giuliani ◽  
Gianmarco Baldini

Spectrum Sensing (SS) is an important function in Cognitive Radio (CR) to detect primary users. The design of SS algorithms is one of the most challenging tasks in CR and requires innovative hardware and software solutions to enhance detection probability and minimize low false alarm probability. Although several SS algorithms have been developed in the specialized literature, limited work has been done to practically demonstrate the feasibility of this function on platforms with significant computational and hardware constraints. In this paper, SS is demonstrated using a low cost TV tuner as agile front-end for sensing a large portion of the Ultra-High Frequency (UHF) spectrum. The problems encountered and the limitations imposed by the front-end are analysed along with the solutions adopted. Finally, the spectrum sensor developed is implemented on an Android device and SS implementation is demonstrated using a smartphone.


2013 ◽  
Vol 765-767 ◽  
pp. 2305-2308
Author(s):  
Shou Tao Lv ◽  
Ze Yang Dai ◽  
Jian Liu

In this paper, we propose a reliable spectrum sensing strategy based on multiple-antenna technique, called RSS-MAT, to combat the channel uncertainties. We derive the closed-form expressions of the false alarm probability and detection probability for RSS-MAT. Finally, we present simulation results to validate our performance analysis. As expected, the simulation results show that RSS-MAT outperforms the spectrum sensing strategy with single antenna.


2013 ◽  
Vol 380-384 ◽  
pp. 1499-1504
Author(s):  
Shi Ding Zhang ◽  
Hai Lian Wang ◽  
Jing Ping Mei

Cooperative spectrum sensing is a key technology to tackle the challenges such as fading or hidden terminal problem in local spectrum sensing of cognitive radio system. Conventional cooperative method can improve the detection performance in some sense, but increase overhead of control channel. In order to reduce the overhead, a new cooperative spectrum sensing algorithm based on confidence level is proposed. In this algorithm, the maximum-eigenvalue-based detection scheme is carried out to obtain the local spectrum detection and the detection probability and false alarm probability of each secondary user are used to estimate the reliability of the sensing decision. The test statistic of the secondary users with high reliability are chosen and sent to fusion center. Then weighted factors of chosen secondary users are derived from creditability values, and the global decision is made by weighted fusion at fusion center. The simulation results show that the proposed algorithm improves the detection probability in the guarantee of the false-alarm probability close to 0 and saves half of the overhead in the control channel.


2019 ◽  
Vol 8 (2) ◽  
pp. 28 ◽  
Author(s):  
Xiao-Li Hu ◽  
Pin-Han Ho ◽  
Limei Peng

In energy detection for cognitive radio spectrum sensing, the noise variance is usually assumed given, by which a threshold is set to guarantee a desired constant false alarm rate (CFAR) or a constant detection rate (CDR). However, in practical situations, the exact information of noise variance is generally unavailable to a certain extent due to the fact that the total noise consists of time-varying thermal noise, receiver noise, and environmental noise, etc. Hence, setting the thresholds by using an estimated noise variance may result in different false alarm probabilities from the desired ones. In this paper, we analyze the basic statistical properties of the false alarm probability by using estimated noise variance, and propose a method to obtain more suitable CFAR thresholds for energy detection. Specifically, we first come up with explicit descriptions on the expectations of the resultant probability, and then analyze the upper bounds of their variance. Based on these theoretical preparations, a new method for precisely obtaining the CFAR thresholds is proposed in order to assure that the expected false alarm probability can be as close to the predetermined as possible. All analytical results derived in this paper are testified by corresponding numerical experiments.


2014 ◽  
Vol 1044-1045 ◽  
pp. 818-824
Author(s):  
Bo Fan Yang ◽  
Rui Wang ◽  
Gang Wang ◽  
Li Zhao

Aiming at signal detection of radar target, concerning about on the basis of the influence of SNR on detection probability when false alarm probability is given based on N-P criterion, a kind of multi-sensor fusion detection based on SNR is put forward. It can improve system’s detection probability under the condition of required false alarm probability in the detection of low SNR signal. The simulation results show that the detection performance is significantly increased, no matter fusion detection system is composed of same sensors working in the same working point or different sensors.


2017 ◽  
Vol 8 (1) ◽  
pp. 9-16
Author(s):  
M. Al-Rawi

This paper measures the performance of cooperative spectrum sensing, over Rayleigh-fading channel and additive white Gaussian noise, based on one-bit hard decision scheme for both AND and OR rules. Three measures based on energy detection are considered including effect of false alarm probability, effect of number of users, and effect of number of samples. Simulation results show that the detection probability increases with increasing false alarm probability, number of users, and number of samples for both AND and OR rules. Also, the performance of OR rule is better than the performance of AND rule.


Author(s):  
Puneeth K M ◽  
Poornima M S

The basic idea of 5th generation New Radio (5GNR) is to have very high data rate and to make it work efficiently for all Internet of Things (IOT) applications like healthcare, Automotive, Industrial etc. applications. This paper provides the Orthogonal Frequency Division Multiple Access (OFDM) baseband signal generation and detection method for Physical Random-Access Channel (PRACH). The proposed model provides four scenarios of preamble detection i.e., Preamble detection probability, Miss-detection probability, False alarm probability and null. We achieved the target of 99% of Probability of Detection and less than 0.1% of False-alarm probability at certain SNR as specified according to 3gpp standard requirements when tested in Additive White Gaussian Noise (AWGN) channel and Extended Typical Urban (ETU) channel.


2018 ◽  
Vol 15 (1) ◽  
pp. 51-54
Author(s):  
Mohanad Abdulhamid

Abstract This paper measures the performance of cooperative spectrum sensing, over Rayleigh fading channel and additive white Gaussian noise, based on softened two-bit hard combination scheme. Two measures based on energy detection are considered including effect of false alarm probability, and effect of number of users. Simulation results show that the detection probability increases with the increase of false alarm probability, number of users, and signal-to-noise-ratio.


Sign in / Sign up

Export Citation Format

Share Document