Paleoseismic dislocations in the Klichka thrust zone, southeastern Transbaikalia

2015 ◽  
Vol 51 (2) ◽  
pp. 146-156 ◽  
Author(s):  
A. V. Chipizubov ◽  
O. P. Smekalin ◽  
V. S. Imaev
1986 ◽  
Vol 77 (2) ◽  
pp. 99-125 ◽  
Author(s):  
R. D. Law ◽  
M. Casey ◽  
R. J. Knipe

ABSTRACTUsing a combination of optical microscopy and X-ray texture goniometry, an integrated microstructural and crystallographic fabric study has been made of quartz mylonites from thrust sheets located beneath, but immediately adjacent to, the Moine thrust in the Assynt and Eriboll regions of NW Scotland. A correlation is established between shape fabric symmetry and pattern of crystallographic preferred orientation, a particularly clear relationship being observed between shape fabric variation and quartza-axis fabrics.Coaxial strain paths dominate the internal parts of the thrust sheets and are indicated by quartzc- anda-axis fabrics which are symmetrical with respect to foliation and lineation. Non-coaxial strain paths are indicated within the more intensely deformed quartzites located near the boundaries of the sheets by asymmetricalc- anda-axis fabrics. These kinematic interpretations are supported by microstructural studies. At the Stack of Glencoul in the northern part of the Assynt region, the transition zone between these kinematic (strain path) domains is located at approximately 20 cm beneath the Moine thrust and is marked by a progression from symmetrical cross-girdlec-axis fabrics (30cm beneath the thrust), through asymmetrical cross-girdlec-axis fabrics to asymmetrical single girdlec-axis fabrics (0·5 cm beneath the thrust).Tectonic models (incorporating processes such as extensional flow, gravity spreading and tectonic loading) which may account for the presence of strain path domains within the thrust sheets are considered, and their compatibility with local thrust sheet geometries assessed.


1992 ◽  
Vol 13 (1) ◽  
pp. 1-4 ◽  
Author(s):  
B. J. Bluck ◽  
W. Gibbons ◽  
J. K. Ingham

AbstractThe Precambrian and Lower Palaeozoic foundations of the British Isles may be viewed as a series of suspect terranes whose exposed boundaries are prominent fault systems of various kinds, each with an unproven amount of displacement. There are indications that they accreted to their present configuration between late Precambrian and Carboniferous times. From north to south they are as follows.In northwest Scotland the Hebridean terrane (Laurentian craton in the foreland of the Caledonian Orogen) comprises an Archaean and Lower Proterozoic gneissose basement (Lewisian) overlain by an undeformed cover of Upper Proterozoic red beds and Cambrian to early mid Ordovician shallow marine sediments. The terrane is cut by the Outer Isles Thrust, a rejuvenated Proterozoic structure, and is bounded to the southeast by the Moine Thrust zone, within the hanging wall of which lies a Proterozoic metamorphic complex (Moine Supergroup) which constitutes the Northern Highlands terrane. The Moine Thrust zone represents an essentially orthogonal closure of perhaps 100 km which took place during Ordovician-Silurian times (Elliott & Johnson 1980). The Northern Highlands terrane records both Precambrian and late Ordovician to Silurian tectonometamorphic events (Dewey & Pankhurst 1970) and linkage with the Hebridean terrane is provided by slices of reworked Lewisian basement within the Moine Supergroup (Watson 1983).To the southwest of the Great Glen-Walls Boundary Fault system lies the Central Highlands (Grampian) terrane, an area dominated by the late Proterozoic Dalradian Supergroup which is underlain by a gneissic complex (Central Highland Granulites) that has been variously interpreted as either older


2020 ◽  
Author(s):  
Felix Kästner ◽  
Simona Pierdominici ◽  
Judith Elger ◽  
Christian Berndt ◽  
Alba Zappone ◽  
...  

<p>Deeply rooted thrust zones are key features of tectonic processes and the evolution of mountain belts. Exhumed and deeply-eroded orogens like the Scandinavian Caledonides allow to study such systems from the surface. Previous seismic investigations of the Seve Nappe Complex have shown indications for a strong but discontinuous reflectivity of this thrust zone, which is only poorly understood. The correlation of seismic properties measured on borehole cores with surface seismic data can help to constrain the origin of this reflectivity. In this study, we compare seismic velocities measured on cores to in situ velocities measured in the borehole. The core and downhole velocities deviate by up to 2 km/s. However, velocities of mafic rocks are generally in close agreement. Seismic anisotropy increases from about 5 to 26 % at depth, indicating a transition from gneissic to schistose foliation. Differences in the core and downhole velocities are most likely the result of microcracks due to depressurization of the cores. Thus, seismic velocity can help to identify mafic rocks on different scales whereas the velocity signature of other lithologies is obscured in core-derived velocities. Metamorphic foliation on the other hand has a clear expression in seismic anisotropy. To further constrain the effects of mineral composition, microstructure and deformation on the measured seismic anisotropy, we conducted additional microscopic investigations on selected core samples. These analyses using electron-based microscopy and X-ray powder diffractometry indicate that the anisotropy is strongest for mica schists followed by amphibole-rich units. This also emphasizes that seismic velocity and anisotropy are of complementary importance to better distinguish the present lithological units. Our results will aid in the evaluation of core-derived seismic properties of high-grade metamorphic rocks at the COSC-1 borehole and elsewhere.</p>


1996 ◽  
Vol 33 (7) ◽  
pp. 1087-1104 ◽  
Author(s):  
N. Wodicka ◽  
R. A. Jamieson ◽  
R. R. Parrish

We report U–Pb zircon ages for metaplutonic and metasedimentary rocks from three lithotectonic assemblages within the Parry Sound allochthon of the Central Gneiss Belt, southwestern Grenville Orogen: the basal Parry Sound, interior Parry Sound, and Twelve Mile Bay assemblages. Magmatic crystallization ages for granitic to tonalitic gneisses from the basal Parry Sound assemblage fall in the range 1400–1330 Ma. Younger intrusions include the Parry Island anorthosite dated at 1163 ± 3 Ma and a crosscutting mafic dyke bracketed between 1151 and 1163 Ma. Dated at [Formula: see text] a tonalitic gneiss from the overlying interior Parry Sound assemblage is slightly younger than the older group of rocks from the basal Parry Sound assemblage. 207Pb/206Pb ages for zircons from a quartzite of the basal Parry Sound assemblage range from 1385 Ma to the Neoarchaean. An absolute maximum age for this quartzite is 1436 ± 17 Ma. In contrast, detrital zircons from a quartzite of the Twelve Mile Bay assemblage constrain the age of deposition at post-ca. 1140–1120 Ma. We speculate that Grenvillian-age zircons within this quartzite were derived from rocks in the Adirondack Highlands and Frontenac terrane, implying that part of the Parry Sound domain and these terranes were contiguous during deposition of the quartzite. Our data support previous interpretations that the Parry Sound domain is allochthonous with respect to its surroundings, and suggest that the most likely source region of the basal Parry Sound domain lies southeast of the Central Gneiss Belt, within the Central Metasedimentary Belt boundary thrust zone or the Adirondack Highlands. This implies the possibility of 100–300 km of displacement of the domain. Emplacement of the Parry Sound domain into its present position must have occurred relatively late in the orogen's history, by about 1080 Ma.


2014 ◽  
Vol 77 ◽  
pp. 22-38 ◽  
Author(s):  
Stefano Vitale ◽  
Mohamed Najib Zaghloul ◽  
Francesco D’Assisi Tramparulo ◽  
Bilal El Ouaragli
Keyword(s):  

Tectonics ◽  
1999 ◽  
Vol 18 (6) ◽  
pp. 1004-1026 ◽  
Author(s):  
W. von Gosen ◽  
K. Piepjohn
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document