scholarly journals Correlation of core and downhole seismic velocities in high-pressure metamorphic rocks: A case study for the COSC-1 borehole, Sweden

Author(s):  
Felix Kästner ◽  
Simona Pierdominici ◽  
Judith Elger ◽  
Christian Berndt ◽  
Alba Zappone ◽  
...  

<p>Deeply rooted thrust zones are key features of tectonic processes and the evolution of mountain belts. Exhumed and deeply-eroded orogens like the Scandinavian Caledonides allow to study such systems from the surface. Previous seismic investigations of the Seve Nappe Complex have shown indications for a strong but discontinuous reflectivity of this thrust zone, which is only poorly understood. The correlation of seismic properties measured on borehole cores with surface seismic data can help to constrain the origin of this reflectivity. In this study, we compare seismic velocities measured on cores to in situ velocities measured in the borehole. The core and downhole velocities deviate by up to 2 km/s. However, velocities of mafic rocks are generally in close agreement. Seismic anisotropy increases from about 5 to 26 % at depth, indicating a transition from gneissic to schistose foliation. Differences in the core and downhole velocities are most likely the result of microcracks due to depressurization of the cores. Thus, seismic velocity can help to identify mafic rocks on different scales whereas the velocity signature of other lithologies is obscured in core-derived velocities. Metamorphic foliation on the other hand has a clear expression in seismic anisotropy. To further constrain the effects of mineral composition, microstructure and deformation on the measured seismic anisotropy, we conducted additional microscopic investigations on selected core samples. These analyses using electron-based microscopy and X-ray powder diffractometry indicate that the anisotropy is strongest for mica schists followed by amphibole-rich units. This also emphasizes that seismic velocity and anisotropy are of complementary importance to better distinguish the present lithological units. Our results will aid in the evaluation of core-derived seismic properties of high-grade metamorphic rocks at the COSC-1 borehole and elsewhere.</p>

2019 ◽  
Author(s):  
Felix Kästner ◽  
Simona Pierdominici ◽  
Judith Elger ◽  
Alba Zappone ◽  
Jochem Kück ◽  
...  

Abstract. Deeply rooted thrust zones are key features of tectonic processes and the evolution of mountain belts. Exhumed and deeply-eroded orogens like the Scandinavian Caledonides allow to study such systems from the surface. Previous seismic investigations of the Seve Nappe Complex have shown indications for a strong but discontinuous reflectivity of this thrust zone, which is only poorly understood. The correlation of seismic properties measured on borehole cores with surface seismic data constrains the origin of this reflectivity. In this study, we compare seismic velocities measured on cores to in situ velocities measured in the borehole. The core and downhole velocities deviate by up to 2 km/s. However, velocities of mafic rocks are generally in close agreement. Seismic anisotropy increases from about 5 to 26 % at depth, indicating a transition from gneissic to schistose foliation. We suggest that differences in the core and downhole velocities are most likely the result of microcracks mainly due to depressurization. Thus, seismic velocity can help to identify mafic rocks on different scales whereas the velocity signature of other lithologies is obscured in core-derived velocities. Metamorphic foliation on the other hand has a clear expression in seismic anisotropy. These results will aid in the evaluation of core-derived seismic properties of high-grade metamorphic rocks at the COSC-1 borehole and elsewhere. In particular, they show that core log seismic integration via synthetic seismograms requires wireline logging data in any but mafic lithologies.


Solid Earth ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 607-626
Author(s):  
Felix Kästner ◽  
Simona Pierdominici ◽  
Judith Elger ◽  
Alba Zappone ◽  
Jochem Kück ◽  
...  

Abstract. Deeply rooted thrust zones are key features of tectonic processes and the evolution of mountain belts. Exhumed and deeply eroded orogens like the Scandinavian Caledonides allow us to study such systems from the surface. Previous seismic investigations of the Seve Nappe Complex have shown indications of a strong but discontinuous reflectivity of this thrust zone, which is only poorly understood. The correlation of seismic properties measured on borehole cores with surface seismic data can constrain the origin of this reflectivity. To this end, we compare seismic velocities measured on cores to in situ velocities measured in the borehole. For some intervals of the COSC-1 borehole, the core and downhole velocities deviate by up to 2 km s−1. These differences in the core and downhole velocities are most likely the result of microcracks mainly due to depressurization. However, the core and downhole velocities of the intervals with mafic rocks are generally in close agreement. Seismic anisotropy measured in laboratory samples increases from about 5 % to 26 % at depth, correlating with a transition from gneissic to schistose foliation. Thus, metamorphic foliation has a clear expression in seismic anisotropy. These results will aid in the evaluation of core-derived seismic properties of high-grade metamorphic rocks at the COSC-1 borehole and elsewhere.


Geophysics ◽  
1971 ◽  
Vol 36 (2) ◽  
pp. 363-381 ◽  
Author(s):  
B. J. Mitchell ◽  
M. Landisman

Data from 20 magnetotelluric stations were used to determine a resistivity‐depth distribution for the crust in western Texas. We computed one‐dimensional models, which adequately explained the apparent resistivities obtained from the elements of a rotated impedance tensor. Descriptions of the method of data processing and model computation are given. The derived model includes an anisotropic, low resistivity layer at depths slightly greater than 20 km. The resistivity model is compared with a seismic velocity interpretation for eastern New Mexico, and the low resistivity layer is inferred to coincide with a zone of low seismic velocity. The base of the low velocity‐low resistivity region occurs at the transition from intermediate to more basic rocks in the crust. The low resistivity values are interpreted as resulting from interstitial fluid. This fluid may cause low seismic velocities and may form a weak region in which continental earthquakes occur. Interstitial water at depth in the crust may be produced by the intersection of the crustal temperature‐depth curve and equilibrium boundaries of hydrothermal reactions.


2020 ◽  
Vol 8 (3) ◽  
pp. T487-T499
Author(s):  
Yunqiang Sun ◽  
Gang Luo ◽  
Yaxing Li ◽  
Mingwen Wang ◽  
Xiaofeng Jia ◽  
...  

It has been recognized that stress perturbations in sediments induced by salt bodies can cause elastic-wave velocity (seismic velocity) changes and seismic anisotropy through changing their elastic parameters, thus leading to difficulties in salt imaging. To investigate seismic velocity changes and seismic anisotropy by near-salt stress perturbations and their impacts on salt imaging, taking the Kuqa depression as an example, we have applied a 2D plane-strain static geomechanical finite-element model to simulate stress perturbations and calculate the associated seismic velocity changes and seismic anisotropy; then we used the reverse time migration and imaging method to image the salt structure by excluding and including the stress-induced seismic velocity changes. Our model results indicate that near-salt stresses are largely perturbed due to salt stress relaxation, and the stress perturbations lead to significant changes of the seismic velocities and seismic anisotropy near the salt structure: The maximum seismic velocity changes can reach approximately 20% and the maximum seismic anisotropy can reach approximately 10%. The significant changes of seismic velocities due to stress perturbations largely impact salt imaging: The salt imaging is unclear, distorted, or even failed if we exclude near-salt seismic velocity changes from the preliminary velocity structure, but the salt can be better imaged if the preliminary velocity structure is modified by near-salt seismic velocity changes. We find that the locations where salt imaging tends to fail usually occur where large seismic velocity changes happen, and these locations are clearly related to the geometric characteristics of salt bodies. To accurately image the salt, people need to integrate results of geomechanical models and stress-induced seismic velocity changes into the imaging approach. The results provide petroleum geologists with scientific insights into the link between near-salt stress perturbations and their induced seismic velocity changes and help exploration geophysicists build better seismic velocity models in salt basins and image salt accurately.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 774
Author(s):  
Yi Cao ◽  
Haemyeong Jung ◽  
Jian Ma

Investigating the seismic properties of natural eclogite is crucial for identifying the composition, density, and mechanical structure of the Earth’s deep crust and mantle. For this purpose, numerous studies have addressed the seismic properties of various types of eclogite, except for a rare eclogite type that contains abundant olivine and orthopyroxene. In this contribution, we calculated the ambient-condition seismic velocities and seismic anisotropies of this eclogite type using an olivine-rich eclogite from northwestern Flemsøya in the Nordøyane ultrahigh-pressure (UHP) domain of the Western Gneiss Region in Norway. Detailed analyses of the seismic properties data suggest that patterns of seismic anisotropy of the Flem eclogite were largely controlled by the strength of the crystal-preferred orientation (CPO) and characterized by significant destructive effects of the CPO interactions, which together, resulted in very weak bulk rock seismic anisotropies (AVp = 1.0–2.5%, max. AVs = 0.6–2.0%). The magnitudes of the seismic anisotropies of the Flem eclogite were similar to those of dry eclogite but much lower than those of gabbro, peridotite, hydrous-phase-bearing eclogite, and blueschist. Furthermore, we found that amphibole CPOs were the main contributors to the higher seismic anisotropies in some amphibole-rich samples. The average seismic velocities of Flem eclogite were greatly affected by the relative volume proportions of omphacite and amphibole. The Vp (8.00–8.33 km/s) and Vs (4.55–4.72 km/s) were remarkably larger than the hydrous-phase-bearing eclogite, blueschist, and gabbro, but lower than dry eclogite and peridotite. The Vp/Vs ratio was almost constant (avg. ≈ 1.765) among Flem eclogite, slightly larger than olivine-free dry eclogite, but similar to peridotite, indicating that an abundance of olivine is the source of their high Vp/Vs ratios. The Vp/Vs ratios of Flem eclogite were also higher than other (non-)retrograded eclogite and significantly lower than those of gabbro. The seismic features derived from the Flem eclogite can thus be used to distinguish olivine-rich eclogite from other common rock types (especially gabbro) in the deep continental crust or subduction channel when high-resolution seismic wave data are available.


2013 ◽  
Vol 5 (2) ◽  
pp. 963-1005 ◽  
Author(s):  
V. Baptiste ◽  
A. Tommasi

Abstract. We calculated the seismic properties of 47 mantle xenoliths from 9 kimberlitic pipes in the Kaapvaal craton based on their modal composition, the crystal preferred orientations (CPO) of olivine, ortho- and clinopyroxene, and garnet, the Fe content of olivine, and the pressures and temperatures at which the rocks were equilibrated. These data allow constraining the variation of seismic anisotropy and velocities with depth. The fastest P wave and fast split shear wave (S1) polarization direction is always close to olivine [100] maximum. Changes in olivine CPO symmetry result in minor variations in the seismic anisotropy patterns. Seismic anisotropy is higher for high olivine contents and stronger CPO. Maximum P waves azimuthal anisotropy (AVp) ranges between 2.5 and 10.2% and S waves polarization anisotropy (AVs) between 2.7 and 8%. Seismic properties averaged in 20 km thick intervals depth are, however, very homogeneous. Based on these data, we predict the anisotropy that would be measured by SKS, Rayleigh (SV) and Love (SH) waves for 5 end-member orientations of the foliation and lineation. Comparison to seismic anisotropy data in the Kaapvaal shows that the coherent fast directions, but low delay times imaged by SKS studies and the low azimuthal anisotropy and SH faster than SV measured using surface waves may only be consistently explained by dipping foliations and lineations. The strong compositional heterogeneity of the Kaapvaal peridotite xenoliths results in up to 3% variation in density and in up to 2.3% of variation Vp, Vs and the Vp/Vs ratio. Fe depletion by melt extraction increases Vp and Vs, but decreases the Vp/Vs ratio and density. Orthopyroxene enrichment decreases the density and Vp, but increases Vs, strongly reducing the Vp/Vs ratio. Garnet enrichment increases the density, and in a lesser manner Vp and the Vp/Vs ratio, but it has little to no effect on Vs. These compositionally-induced variations are slightly higher than the velocity perturbations imaged by body-wave tomography, but cannot explain the strong velocity anomalies reported by surface wave studies. Comparison of density and seismic velocity profiles calculated using the xenoliths' compositions and equilibrium conditions to seismological data in the Kaapvaal highlights that: (i) the thickness of the craton is underestimated in some seismic studies and reaches at least 180 km, (ii) the deep sheared peridotites represent very local modifications caused and oversampled by kimberlites, and (iii) seismological models probably underestimate the compositional heterogeneity in the Kaapvaal mantle root, which occurs at a scale much smaller than the one that may be sampled seismologically.


2021 ◽  
Author(s):  
Felix Kästner ◽  
Simona Pierdominici ◽  
Alba Zappone ◽  
Luiz F. G. Morales ◽  
Anja M. Schleicher ◽  
...  

<p>Metamorphic and deformed rocks in thrust zones show particularly high seismic anisotropy causing challenges for seismic imaging and interpretation. A good example is the Seve Nappe Complex in Jämtland, Sweden, an exhumed orogenic thrust zone characterized by a strong but incoherent seismic reflectivity and considerable seismic anisotropy. However, only little is known about the origin of the anisotropy in relation to composition, structural influences, and implications for measurements at different seismic scales. We present an integrative study of the seismic anisotropy at different scales combining mineralogical composition, microstructural analyses and seismic laboratory experiments from samples of the 2.5 km-deep COSC-1 borehole. While there is a pronounced crystallographic preferred orientation in most of the core samples, variations in anisotropy correlate strongly with bulk mineral composition and dominant core lithology. Based on three major lithologic different facies (felsic gneiss, amphibole-rich rocks, and mica schists), we propose an anisotropy model for the full length of the borehole, which indicates two prevailing anisotropic units. Comparison of laboratory seismic measurements and electron-backscatter diffraction (EBSD) data reveals a strong scale-dependence, which is more pronounced in the highly deformed, heterogeneous samples. This highlights the need for comprehensive cross-validation of microscale anisotropy analyses with additional lithological data when integrating seismic anisotropy through seismic scales.</p>


2020 ◽  
Author(s):  
Jaroslava Plomerová ◽  
Helena Žlebčíková ◽  
György Hetényi ◽  
Luděk Vecsey ◽  
Vladislav Babuška ◽  
...  

<p><span>Convergence between the European and African plates formed the Alps and the neighbouring mountain belts. We present results based on teleseismic body-wave data from the AlpArray-EASI complementary experiment (2014-2015, Hetényi et al., Tectonophysics 2018) and the AlpArray Seismic Network (Hetényi et al., Surv. Geophys. 2018). Tomography of seismic velocities in the upper mantle, as well as seismic anisotropy study along a ca. 200 km broad and 540 km long north-south transect (crossing the Bohemian Massif in the north, the East-Alpine root, and reaching the Adriatic Sea in the south), image the steeply northward dipping East-Alpine root, dominated by the Adriatic plate, steady southward thickening of the lithosphere beneath the Bohemian Massif and distinct regional variations of mantle lithosphere fabrics modelled in 3D. These characteristics imply complex, domain-like architecture of the collisional zone of the European/Adriatic plates beneath the Alps. Thanks to the close spacing of the AlpArray stations and high-quality data, the high-resolution tomography resolved for the first time two neighbouring</span><span> high-velocity northward-dipping heterogeneities </span><span>beneath the Eastern Alps, instead of one thick root of the lithosphere. The southern one, which we relate to the Adriatic plate, is more distinct, the northern one is less pronounced, it delaminates at ~100km depth and diminishes in direction toward the Central Alps. It may represent a remnant of an early phase subduction of the European plate with the switched polarity (relative to the polarity in the Western Alps), or a preceding phase of the Adriatic subduction.</span></p>


2018 ◽  
Author(s):  
Johanna Kerch ◽  
Anja Diez ◽  
Ilka Weikusat ◽  
Olaf Eisen

Abstract. One of the greatest challenges in glaciology, with respect to sea level predictions, is the ability to gain information on bulk ice anisotropy in ice sheets and glaciers, which is urgently needed to improve our understanding of ice-sheet dynamics. Therefore, we investigate the effect of crystal anisotropy on seismic velocities in a glacier. We revisit the framework which is based on fabric eigenvalues to derive approximate seismic velocities by exploiting the assumed symmetry. In contrast to previous studies, we calculate the seismic velocities using the exact c-axis angles describing the orientations of the crystal ensemble in an ice-core sample. We apply this approach to fabric data sets from an Alpine (KCC) and a polar (EDML) ice core. The results allow a quantitative evaluation of the earlier approximative eigenvalue framework. Additionally, our findings highlight the variation in seismic velocity as a function of the horizontal azimuth of the seismic plane, which can be significant in case of non-symmetric orientation distributions and results in a strong azimuth-dependent shear-wave splitting. For the first time, we assess the change in seismic anisotropy that can be expected on a short spatial scale in a glacier due to a strong variability in crystal-orientation fabric. Our investigation of seismic anisotropy based on ice-core data contributes to advancing the interpretation of seismic data, with respect to extracting bulk information about crystal anisotropy without having to drill an ice core and with special regard to future applications employing ultrasonic sounding.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 380
Author(s):  
Jaeseok Lee ◽  
Haemyeong Jung

Various rock phases, including those in subducting slabs, impact seismic anisotropy in subduction zones. The seismic velocity and anisotropy of rocks are strongly affected by the lattice-preferred orientation (LPO) of minerals; this was measured in retrograded eclogites from Xitieshan, northwest China, to understand the seismic velocity, anisotropy, and seismic reflectance of the upper part of the subducting slab. For omphacite, an S-type LPO was observed in three samples. For amphibole, the <001> axes were aligned subparallel to the lineation, and the (010) poles were aligned subnormal to foliation. The LPOs of amphibole and omphacite were similar in most samples. The misorientation angle between amphibole and neighboring omphacite was small, and a lack of intracrystalline deformation features was observed in the amphibole. This indicates that the LPO of amphibole was formed by the topotactic growth of amphibole during retrogression of eclogites. The P-wave anisotropy of amphibole in retrograded eclogites was large (approximately 3.7–7.3%). The seismic properties of retrograded eclogites and amphibole were similar, indicating that the seismic properties of retrograded eclogites are strongly affected by the amphibole LPO. The contact boundary between serpentinized peridotites and retrograded eclogites showed a high reflection coefficient, indicating that a reflected seismic wave can be easily detected at this boundary.


Sign in / Sign up

Export Citation Format

Share Document