Hydraulic System Modeling with Recurrent Neural Network for the Faster Than Real-Time Simulation

Author(s):  
Julia Malysheva ◽  
Ming Li ◽  
Heikki Handroos
Author(s):  
Laurenţiu I. Buzdugan ◽  
Ole Balling ◽  
Peter Chien-Te Lee ◽  
Claus Balling ◽  
Jeffrey S. Freeman ◽  
...  

Abstract This paper details a real-time simulation of an articulating wheel loader, which is comprised of a multibody system modeling the chassis and the bucket assembly and a set of subsystems. The hydraulic subsystem is modeled by a set of ODE’s which represent the oil pressure fluctuations in the system. An Adams-Bashforth-Moulton integration algorithm has been implemented using the Nordsieck form to develop a constant step-size multirate integration scheme, modeling the interaction between the hydraulic subsystem and multibody dynamics models. An example illustrating the simulation of a wheel loader bucket operation is presented at the end of the paper.


Author(s):  
Oliver Rhodes ◽  
Luca Peres ◽  
Andrew G. D. Rowley ◽  
Andrew Gait ◽  
Luis A. Plana ◽  
...  

Real-time simulation of a large-scale biologically representative spiking neural network is presented, through the use of a heterogeneous parallelization scheme and SpiNNaker neuromorphic hardware. A published cortical microcircuit model is used as a benchmark test case, representing ≈1 mm 2 of early sensory cortex, containing 77 k neurons and 0.3 billion synapses. This is the first hard real-time simulation of this model, with 10 s of biological simulation time executed in 10 s wall-clock time. This surpasses best-published efforts on HPC neural simulators (3 × slowdown) and GPUs running optimized spiking neural network (SNN) libraries (2 × slowdown). Furthermore, the presented approach indicates that real-time processing can be maintained with increasing SNN size, breaking the communication barrier incurred by traditional computing machinery. Model results are compared to an established HPC simulator baseline to verify simulation correctness, comparing well across a range of statistical measures. Energy to solution and energy per synaptic event are also reported, demonstrating that the relatively low-tech SpiNNaker processors achieve a 10 × reduction in energy relative to modern HPC systems, and comparable energy consumption to modern GPUs. Finally, system robustness is demonstrated through multiple 12 h simulations of the cortical microcircuit, each simulating 12 h of biological time, and demonstrating the potential of neuromorphic hardware as a neuroscience research tool for studying complex spiking neural networks over extended time periods. This article is part of the theme issue ‘Harmonizing energy-autonomous computing and intelligence’.


Author(s):  
Madusudanan Sathia Narayanan ◽  
Puneet Singla ◽  
Sudha Garimella ◽  
Wayne Waz ◽  
Venkat Krovi

Nonlinearities inherent in soft-tissue interactions create roadblocks to realization of high-fidelity real-time haptics-based medical simulations. While finite element (FE) formulations offer greater accuracy over conventional spring-mass-network models, computational-complexity limits achievable simulation-update rates. Direct interaction with sensorized physical surrogates, in offline or online modes, allows a temporary sidestepping of computational issues but hinders parametric analysis and true exploitation of a simulation-based testing paradigm. Hence, in this paper, we develop Radial-Basis Neural-Network approximations, to FE-model data within a Modified Resource Allocating Network (MRAN) framework. Real-time simulation of the reduced order neural-network approximations at high temporal resolution provided the haptic-feedback. Validation studies are being conducted to evaluate the kinesthetic realism of these models with medical experts.


SIMULATION ◽  
2010 ◽  
Vol 87 (1-2) ◽  
pp. 113-132 ◽  
Author(s):  
Federico Bergero ◽  
Ernesto Kofman

Sign in / Sign up

Export Citation Format

Share Document