Selective Extraction of Li, Rb, and Cs and Precipitation of Lithium Carbonate Directly from Lithium Porcelain Stone

2020 ◽  
Vol 61 (2) ◽  
pp. 143-152
Author(s):  
Jinliang Wang ◽  
Huazhou Hu ◽  
Boren Ji
1987 ◽  
Author(s):  
J. Fawcett ◽  
◽  
D. C. Clark ◽  
C. A. Aagesen ◽  
V. D. Pisani ◽  
...  

Author(s):  
O. Yu. Kichigina

At production of stainless steel expensive alloying elements, containing nickel, are used. To decrease the steel cost, substitution of nickel during steel alloying process by its oxides is an actual task. Results of analysis of thermodynamic and experimental studies of nickel reducing from its oxide presented, as well as methods of nickel oxide obtaining at manganese bearing complex raw materials enrichment and practice of its application during steel alloying. Technology of comprehensive processing of complex manganese-containing raw materials considered, including leaching and selective extraction out of the solution valuable components: manganese, nickel, iron, cobalt and copper. Based on theoretical and experiment studies, a possibility of substitution of metal nickel by concentrates, obtained as a result of hydrometallurgical enrichment, was confirmed. Optimal technological parameters, ensuring high degree of nickel recovery out of the initial raw materials were determined. It was established, that for direct steel alloying it is reasonable to add into the charge pellets, consisting of nickel concentrate and coke fines, that enables to reach the through nickel recovery at a level of 90%. The proposed method of alloying steel by nickel gives a possibility to decrease considerably steel cost at the expense of application of nickel concentrate, obtained out of tails of hydrometallurgical enrichment of manganese-bearing raw materials, which is much cheaper comparing with the metal nickel.


Author(s):  
Shaukat A. Khan ◽  
Amit Anand ◽  
Deepak Cyril D'Souza
Keyword(s):  

2006 ◽  
Vol 25 (5) ◽  
pp. 243-250 ◽  
Author(s):  
M S Allagui ◽  
N Hfaiedh ◽  
C Vincent ◽  
F Guermazi ◽  
J-C Murat ◽  
...  

Lithium therapy, mainly used in curing some psychiatric diseases, is responsible for numerous undesirable side effects. The present study is a contribution to the understanding of the pathophysiological mechanisms underlying lithium toxicity. Male and female mature rats were divided into three batches and fed commercial pellets: one batch was the control and the second and third batches were given 2 g (Li1) and 4 g (Li2) of lithium carbonate/kg of food/day, respectively. After 7, 14, 21 and 28 days, serum levels of free tri-iodothyronine (FT3), thyroxine (FT4), testosterone and estradiol were measured. Attention was also paid to growth rate and a histological examination of testes or vaginal mucosa was carried out. In treated rats, a dose-dependent loss of appetite and a decrease in growth rate were observed, together with symptoms of polydypsia, polyuria and diarrhea. Lithium serum concentrations increased from 0.44 mM (day 7) to 1.34 mM (day 28) in Li1 rats and from 0.66 to 1.45 mM (day 14) in Li2 rats. Li2 treatment induced a high mortality after 14 days, reaching 50-60% in female and male animals. From these data, the LD50 (14 days Li2 chronic treatment) was calculated to be about 0.3 g/day per kilogram of animal, leading to Li serum concentrations of about 1.4 mM. A significant decrease of FT3 and FT4 was observed in treated rats. This effect appeared immediately for the highest dose and was more pronounced for FT3, resulting in an increase of the FT4/FT3 ratio. In males, testosterone decreased and spermatogenesis was stopped. Conversely, in females, estradiol increased in a dose-dependent manner as the animals were blocked in the diestrus phase at day 28. This finding supports a possible antagonistic effect of lithium on the estradiol receptors.


Sign in / Sign up

Export Citation Format

Share Document