Effect of heat treatment on pitting corrosion resistance of 6061 Al/SiCP composite coated by the cerium oxide film in 3.5 N NaCl solution

2011 ◽  
Vol 47 (2) ◽  
pp. 176-180 ◽  
Author(s):  
S. Rajasekaran ◽  
N. K. Udayashankar ◽  
Jagannath Nayak
2021 ◽  
Author(s):  
Vinda Puspasari ◽  
Mukhlis Agung Prasetyo ◽  
Arini Nikitasari ◽  
Efendi Mabruri ◽  
Moch. Syaiful Anwar

2021 ◽  
Author(s):  
Mingzhen Xiu ◽  
Yong Teck Tan ◽  
Srinivasan Raghavan ◽  
Min Hao Goh ◽  
Mui Ling Sharon Nai

Abstract There has been limited studies on corrosion behaviour of post-processed Electron Beam Melted (EBM) Ti6Al4V, given that the factors affecting corrosion resistance of AM Ti6Al4V remain unclear. This paper proposes using heat treatment method to improve the pitting corrosion resistance of EBM Ti6Al4V. Different treatment profiles alter the microstructure of EBM Ti6Al4V. A clear trend is observed between microhardness and α lath width. As-printed EBM Ti6Al4V exhibits an inferior pitting potential, while heat treatment provided a significant improvement in the corrosion resistance. This study finds that the β phase fraction is a better indicator than the α lath width for pitting corrosion resistance. Solution air-cooled & ageing heat treated EBM Ti6Al4V exhibits good mechanical and corrosion properties, and even performs better than commercial cast Ti6Al4V.


2008 ◽  
Vol 59 (12) ◽  
pp. 1736-1740 ◽  
Author(s):  
A.M. do Nascimento ◽  
M.C.F. Ierardi ◽  
A.Y. Kina ◽  
S.S.M. Tavares

2021 ◽  
Vol 17 (1) ◽  
pp. 20-33
Author(s):  
Abdullah Dhayea Assi

In this research is to study the influence of the aging heat treatment on the pitting corrosion resistance of martensitic stainless steel (MSS), where a number of specimens from martensitic stainless steel were subjected to solution treatment at 1100 oC for one hour followed by water quenching then aging in the temperatures range (500-750) oC for different holding times (1,5,10,15&20) hr. Accelerated chemical corrosion test and immersion chemical corrosion test were performed on samples after heat treatment. The results of the research showed that the pitting corrosion resistance is significantly affected by the aging temperature. Where found that the aging samples at a temperature of 500 °C have the highest rate of corrosion which may be due to an increase in the ratio of the Delta type ferrite (δ-ferrite) and very soft precipitates from other phases of heterogeneous form in the basic martensitic phase; which leads to increased corrosion rate, whereas aging   samples in the temperature range (550–650) °C have the smaller rate of corrosion values, this is due to the high volumetric ratio of remaining austenite. The aging samples at temperatures above 650 °C show an average corrosion rate. It was also found that the type of pits resulting from both the chemical corrosion tests and their shape were not related to the ferrite type and the carbides present in the microstructure


Sign in / Sign up

Export Citation Format

Share Document