Improving the dynamic precision of the tool position in a machining center

2010 ◽  
Vol 30 (1) ◽  
pp. 77-80
Author(s):  
V. E. Lysov ◽  
Ya. I. Peshev
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Wei Li ◽  
Decheng Wang ◽  
Peng Cheng

Currently, the spring machine tool is fixed by means of manual clamping and positioning by bolts. The automation of the tool change is low, and the accurate value of the tool position cannot be determined. The automatic tool change system for spring machine was designed by using the standard functional parts of the automatic tool change system of the machining center. It mainly includes the design of the automatic loose clamp device and that of the multispindle automatic tool change arm. After static analysis, the deformation of the automatic tool change arm is 0.153 mm, which satisfies the requirements for usage. Kinematic analysis of the designed automatic tool change arm was carried out. After actual verification, the designed automatic tool change system of spring machine realizes the functions of the tools automatic replacement and positioning of the spring machine, which improves the automation of the spring forming equipment.


2016 ◽  
Vol 10 (2) ◽  
pp. 162-171
Author(s):  
Hafid Hafid ◽  
Tatang Sutisna

The design and manufacturing of the rotary table with the specification Ø 170 mm (6 inches) for CNC machine 4 axis has been done. The objective of manufacturing a rotary table is to increase the efficiency of CNC machine Hardford 4 axis to be above 80% in line machining center CV. IM’s workshop. The engineering methods was taken, consist of: working preparation, manufacturing of working drawing, engineering process, the manufacturing and testing. The prototype has been tested and operated, the resulting of increasing productivity of which were as follows: the process of assembling was increased to be 3 time ( before 1 time) and processing time for a specific case reduced from 5 hours to 3 hours, number of operators for the case of assembling the rotary reduced to 1 person (before 4 persons), safety and security become to be better. The results show increased efficiency of CNC machine Hardford, from under 50% to be above 80%. Based on the economical analysis obtained by the cost of good sold (C.G.S) of the rotary table is IDR 34.060.000. The results presented in this paper is expected to be case study for developing a business of the metal and engineering SMEs domestic to the effort of improving efficiency, quality, productivity and competitiveness in global market.ABSTRAKPerancangan dan pembuatan alat bantu meja putar (rotary table) dengan spesifikasi teknis Ø 170 mm (6 inci) untuk mesin CNC 4 axis telah dilakukan. Tujuan pembuatan rotary table adalah untuk meningkatkan efisiensi mesin CNC Hardford 4 axis di atas 80% pada line machining center Bengkel CV. IM. Metode rancang bangun yang dilakukan, meliputi: persiapan kerja, pembuatan gambar kerja, proses engineering, pembuatan dan uji coba. Prototip tersebut telah diuji coba dan dioperasikan dengan hasil peningkatan produktivitas sebagai berikut: proses pengerjaan bongkar pasang meningkat menjadi 3 kali (sebelumnya 1 kali) dan waktu pengerjaan untuk kasus tertentu berkurang dari 5 jam menjadi 3 jam, jumlah operator untuk kasus bongkar pasang rotary berkurang menjadi 1 orang (sebelumnya 4 orang), keselamatan kerja dan keamanan menjadi lebih baik. Hasil peningkatan berupa efisiensi mesin CNC Hardford 4 axis dari sebelumnya di bawah 50% menjadi di atas 80%. Berdasarkan hasil perhitungan analisis ekonomi diperoleh harga pokok produksi (HPP) alat bantu meja putar adalah sebesar Rp. 34.060.000. Bahasan ini diharapkan menjadi contoh kasus bagi pengembangan usaha IKM logam dan mesin dalam negeri untuk meningkatkan efisiensi, mutu, produktivitas dan keunggulan daya saing di pasar global.Kata kunci: alat bantu meja putar, mesin CNC, harga pokok produksi


Author(s):  
Laurivan da Silva Diniz ◽  
JOSE CARLOS DE LIMA JUNIOR ◽  
João Bosco de Aquino Silva ◽  
Francisco Augusto Vieira da Silva
Keyword(s):  

2020 ◽  
pp. 47-52
Author(s):  
A.A. Mahov ◽  
O.G. Dragina ◽  
P.S. Belov ◽  
S.L. Mahov

The possibility of using linear feed drives along the X and the Y axes in the portal-milling machining center is shown. The calculations of force indicators of drives, feed drives of traverse and carriage for two modes, as well as the selection of Siemens linear motors are given. Keywords milling machining center, drive, feed, linear electric motor. [email protected]


2013 ◽  
Vol 3 (1) ◽  
pp. 31
Author(s):  
Hafid Abdullah
Keyword(s):  

Masalah terletak pada rendahnya efisiensi mesin CNC : Mori Seiki dan Topper 920 pada line machining center di PT. ABC yang merupakan salah satu produsen berbagai jenis komponen otomotif di Indonesia. Tujuan peningkatan untuk memperoleh efisiensi mesin CNC di atas 80 % sehingga produk yang dihasilkannya mampu bersaing di pasar global. Cara peningkatan adalah melalui implementasi metode kaizen, yaitu : perbaikan terhadap standar kerja, secara selangkah demi selangkah dan terus menerus terhadap proses, yang melibatkan semua pihak baik pimpinan maupun karyawannya yang meliputi : (a) sistem penggantian dan penggabungan jig, (b) pembenahan pallet untuk jig, (c) perbaikan mesin dengan agen, (d) sistem clamping, (e) proses champering. Hasil peningkatan berupa efisiensi mesin Mori Seiki (dari 66 % menjadi 83 %) dan Topper 920 (dari 74 % menjadi 83 %).Kata kunci : kaizen, perbaikan, mesin CNC : mori seiki dan topper 920


Author(s):  
Axel Fehrenbacher ◽  
Christopher B. Smith ◽  
Neil A. Duffie ◽  
Nicola J. Ferrier ◽  
Frank E. Pfefferkorn ◽  
...  

The objective of this research is to develop a closed-loop control system for robotic friction stir welding (FSW) that simultaneously controls force and temperature in order to maintain weld quality under various process disturbances. FSW is a solid-state joining process enabling welds with excellent metallurgical and mechanical properties, as well as significant energy consumption and cost savings compared to traditional fusion welding processes. During FSW, several process parameter and condition variations (thermal constraints, material properties, geometry, etc.) are present. The FSW process can be sensitive to these variations, which are commonly present in a production environment; hence, there is a significant need to control the process to assure high weld quality. Reliable FSW for a wide range of applications will require closed-loop control of certain process parameters. A linear multi-input-multi-output process model has been developed that captures the dynamic relations between two process inputs (commanded spindle speed and commanded vertical tool position) and two process outputs (interface temperature and axial force). A closed-loop controller was implemented that combines temperature and force control on an industrial robotic FSW system. The performance of the combined control system was demonstrated with successful command tracking and disturbance rejection. Within a certain range, desired axial forces and interface temperatures are achieved by automatically adjusting the spindle speed and the vertical tool position at the same time. The axial force and interface temperature is maintained during both thermal and geometric disturbances and thus weld quality can be maintained for a variety of conditions in which each control strategy applied independently could fail.


Sign in / Sign up

Export Citation Format

Share Document