Discontinuous and composite grinding wheels in bilateral face grinding of thin-walled blanks

2013 ◽  
Vol 33 (4) ◽  
pp. 238-242
Author(s):  
A. D. Evstigneev
Author(s):  
Mahmoud M. Rababah ◽  
Zezhong C. Chen

Grinding the helical surfaces in end-mill cutters using two-axis CNC machines is well investigated in literature. However, the grinding wheels do not have explicit geometric representations and the produced helical angles differ from the designed values. Moreover, to the best knowledge of the authors, no reliable and robust algorithm exists to grind generic shape cutters with constant normal rake angles. Thus, the first part of this work introduces a five-axis grinding process that keeps the normal rake angle constant along the rake face. The parameters that affect the shape of the tool flutes are also analyzed and studied in this part. These parameters are then optimized in the second part to obtain optimum wheel shapes grinding the tool flutes along optimum paths. Overall, the grinding process proposed grinds the tool flutes with close matching to the designed ones and replaces the complex wheel shapes commonly used by simple prismatic ones.


1996 ◽  
Vol 118 (3) ◽  
pp. 620-625
Author(s):  
R. B. Mindek ◽  
T. D. Howes

Workpiece profile accuracy, wheel wear, and thermal damage were investigated for the grinding of slots and vertical faces on MAR-M-247, Inconel 713C, and M-2 tool steel using both alumina and cubic boron nitride (CBN) grinding wheels. It was found when grinding with alumina wheels that the wheel corner and first 2.5 mm of the grinding wheel sidewall account for all the grinding forces in the vertical, horizontal, and transverse directions, and therefore is responsible for all the significant grinding done on the sideface of the workpiece. Since previous work links wheel wear and workpiece thermal damage during grinding to grinding forces, this finding suggests that the area around the wheel corner is the critical region of importance in grinding these types of profiles in terms of wheel wear and the heat input to the workpiece. These, in turn, are linked to workpiece profile accuracy and metallurgical damage. Results also show that striation marks inherent in sidewall grinding can be minimized by controlling the maximum normal infeed rate of the wheel. A method for minimizing the heat input into the workpiece by minimizing grinding force during vertical face grinding is also reported.


Author(s):  
I. Nikitina ◽  
A. Polyakov

The paper presents an analysis of thermal processes in the bearing system of a double-sided face grinding machine. Experimental data on temperatures and displacements obtained when the machine is idling and when imitating the grinding process with the help of electric heaters of various powers are used for analysis. The performed studies have shown that thermal deformations of double-sided face grinding machines with an arc trajectory of workpiece feed occur in a wide range in magnitude and direction. It can violate the main requirement for the precise operation of the machine - the symmetry of processing conditions at both ends of the workpiece. From the experiments, the absolute value of the non-parallelism of the grinding wheels after three hours of operation is established; it is almost twice the value of the removed allowance. Analysis of the kinetic change in the deformations of the supporting system of the machine tool during operation under thermal load shows that as it warms up, the relative position of the grinding wheels gradually changes from the state "wider at the bottom" to the state "narrower below". This leads to a spontaneous change in the dynamic tuning of the technological system and a corresponding change in the processing accuracy. Changes in the dynamic tuning of the technological system with varying intensity continue throughout the entire operating time of the machine.


Sign in / Sign up

Export Citation Format

Share Document