Selecting the cutting tool for numerically controlled machine tools

2015 ◽  
Vol 35 (2) ◽  
pp. 132-134 ◽  
Author(s):  
E. G. Krylov ◽  
Yu. P. Serdobintsev
Author(s):  
C. W. McCutchen ◽  
Lois W. Tice

Ultramicrotomists live in a state of guerilla warfare with chatter. This situation is likely to be permanent. We can infer this from the history of machine tools. If set the wrong way for the particular combination of cutting tool and material, most if not all machine tools will chatter.In more than 100 years since machine tools became common, no one has evolved a practical recipe that guarantees avoiding chatter. Rather than follow some single very conservative rule to avoid chatter in all cases, machinists detect it when it happens, and change conditions until it stops. This is possible because they have no trouble telling when their cutting tool is chattering. They can see chatter marks, and they can also hear a sometimes deafening noise.


1998 ◽  
Vol 2 ◽  
pp. 115-122
Author(s):  
Donatas Švitra ◽  
Jolanta Janutėnienė

In the practice of processing of metals by cutting it is necessary to overcome the vibration of the cutting tool, the processed detail and units of the machine tool. These vibrations in many cases are an obstacle to increase the productivity and quality of treatment of details on metal-cutting machine tools. Vibration at cutting of metals is a very diverse phenomenon due to both it’s nature and the form of oscillatory motion. The most general classification of vibrations at cutting is a division them into forced vibration and autovibrations. The most difficult to remove and poorly investigated are the autovibrations, i.e. vibrations arising at the absence of external periodic forces. The autovibrations, stipulated by the process of cutting on metalcutting machine are of two types: the low-frequency autovibrations and high-frequency autovibrations. When the low-frequency autovibration there appear, the cutting process ought to be terminated and the cause of the vibrations eliminated. Otherwise, there is a danger of a break of both machine and tool. In the case of high-frequency vibration the machine operates apparently quiently, but the processed surface feature small-sized roughness. The frequency of autovibrations can reach 5000 Hz and more.


2016 ◽  
Vol 1136 ◽  
pp. 651-654
Author(s):  
Hideki Aoyama ◽  
Duo Zhang

It is frequently the case that the feed rate indicated in a numerical control (NC) program does not obtain in actual machining processes and the cutting tool does not path the points indicated in the NC. A reason underlying such problems is that control gains are not optimized, which causes issues with acceleration and deceleration in the control of machine tools. To address these problems, in this paper, we propose a method for the optimization of control gains using the MATLAB and Simulink software by considering the weight of the workpiece, the controlling distance, and the controlling speed. Simulations confirmed the effectiveness of our proposed optimization.


2017 ◽  
Vol 2 (3) ◽  
pp. 37-44
Author(s):  
Сергей Лагутин ◽  
Sergey Lagutin ◽  
Александр Сандлер ◽  
Aleksandr Sandler ◽  
Евгений Гудов ◽  
...  

Worm gears of different purposes and dimensions belong to those objects of mechanical engineering which are connected with science intensive design works (computations and development of design arrangements) and with their not less science intensive technological realization in the course of production. In 2016 the authors published a training manual “Theory and practice of general worm gears production” (M. Infra-Engineering, 2016. – pp. 346) where there is generalized a scientific-production experience of enterprises of mechanical engineering and machine tools manufacture for the formation of the complex of modular and functionally-oriented technologies ensuring required quality and performance characteristics of such objects. As a distinctive feature of such a complex is the interconnection of design and production processes of gear basic parts: a worm, a worm wheel with similar processes in the formation of a producing surface in a gear-cutting tool for a worm wheel.


2019 ◽  
Vol 299 ◽  
pp. 04003
Author(s):  
Juraj Kundrík ◽  
Marek Kočiško ◽  
Martin Pollák ◽  
Monika Telišková ◽  
Anna Bašistová ◽  
...  

Modern CNC machine tools include a number of sensors that collect machine status data. These data are used to control the production process and for control of the CNC machine status. No less importantpart of the production process is also a machine tool. The condition of the cutting tool is important for the production quality and its failure can cause serious problems. Monitoring the condition of thecutting tool is complicated due to its dimensions and working conditions. The article describes how the tool wear can be predicted from the measured values of vibration and pressure by using neural networks.


Sign in / Sign up

Export Citation Format

Share Document