scholarly journals High pressure garnet amphibolites in ophiolitic mélange from the Changning-Menglian suture zone, southeast Tibetan Plateau: P-T-t path and tectonic implication

China Geology ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 95-110
Author(s):  
Zheng-bin Gou ◽  
◽  
Bao-di Wang ◽  
Dong-bing Wang ◽  
Zhi-min Peng
2018 ◽  
Vol 483 (4) ◽  
pp. 417-421
Author(s):  
I. Likhanov ◽  
◽  
P. Kozlov ◽  
K. Ivanov ◽  
S. Zinov'ev ◽  
...  

2013 ◽  
Vol 2 (9) ◽  
pp. 102-115
Author(s):  
Yousif Osman Mohammad ◽  
Nabaz Rashid Hama Aziz

The Pauza ultramafic body is part of Upper Cretaceous Ophiolitic massifs of the Zagros Suture Zone, NE Iraq. The present study reveals evidence of Ultra-high pressure (UHP), and deep mantle signature of these peridotites in the Zagros Suture Zone throughout the observation of backscattered images and micro analyses which have been performed on orthopyroxen crystals in lherzolite of Pauza ultramafic rocks.Theorthopyroxen shows abundant exsolution lamellae of coarse unevenly distributed clinopyroxene coupled with the submicron uniformly distributed needles of Cr-spinel. The observed clusters of Opx–Cpx–Spl represent the decompression products of pyrope-rich garnet produced as a result of the transition from ultra-high pressure garnet peridotite to low-pressure spinel peridotite (LP). Neoblastic olivine (Fo92 – 93) with abundant multi-form Cr- spinel inclusions occurs as a fine-grained aggregate around orthopyroxene, whereas coarse olivine (Fo90-91) free from chromian-spinel is found in matrix. The similarity of the Cr-spinel lamellae orientations in both olivine and orthopyroxene, moreover, the enrichments of both Cr and Fe3+ in the Cr-spinel inclusions in neoblastic olivine relative to Cr-spinel lamellae in orthopyroxene, suggest that spinel inclusions in olivine have been derived from former Cr-spinel lamellae in orthopyroxene. Neoblastic olivine is formed by reaction of silica-poor ascending melt and orthopyroxene. It is inferred that the olivines with multi-form spinel inclusions has been formed by incongruent melting of pre-existing spinel lamellae-rich orthopyroxene.


2017 ◽  
Vol 79 ◽  
pp. 17-26 ◽  
Author(s):  
Xiaocheng Zhou ◽  
Lei Liu ◽  
Zhi Chen ◽  
Yueju Cui ◽  
Jianguo Du

1992 ◽  
Vol 29 (6) ◽  
pp. 1296-1304 ◽  
Author(s):  
Philippe Erdmer

Until recently, the Nisutlin allochthonous assemblage, a part of the Yukon–Tanana composite terrane interpreted as trench mélange from a late Paleozoic – Mesozoic arc system, was the only tectonic assemblage known to include subducted material in the northern Cordillera. The discovery of eclogitic rocks in two parts of a klippe of the Anvil allochthonous assemblage, which comprises mafic ophiolitic rocks, above the Cassiar terrane west of the Tintina fault confirms other evidence that subducted oceanic crust was also returned to the surface. The eclogitic rocks have been largely retrograded by postsubduction metamorphism. Their existence is interpreted as additional evidence of the link between nappes above the Cassiar terrane and their inferred root, the Teslin suture zone. The Nisutlin and Anvil allochthonous assemblages can now be interpreted, not simply as crustally metamorphosed assemblages with minor, structurally interleaved high-pressure components, but as deeply metamorphosed and intensely strained slices of continental and oceanic crust switched from subducting slab to overriding plate and returned to the surface during collision of the arc with the North American margin.


Sign in / Sign up

Export Citation Format

Share Document