scholarly journals MONITORING AND MANAGEMENT OF HYDROLOGICAL RISKS IN THE RIVER BASINS OF UKRAINE

Author(s):  
O. M. Kozytskyi ◽  
S. A. Shevchuk ◽  
I. A. Shevchenko

Background of the study. Due to the increasing intensity and frequency of catastrophic floods occurrence, one of the most important tasks of the water management of Ukraine is to increase the efficiency of the existing system of flood protection due to the implementation of integrated flood risk management methods based on the assessment of flood hazard levels requirements according to Directive 2007/60/EC. The development of scientific and methodological bases for the assessment and mapping of flood hazard and risk levels, as well as the development of integrated flood risk management plans based on them, is an important and urgent task in Ukraine as an associated EU member. The purpose of the work is to highlight the main works results, performed at the Institute on the study of patterns of riverbed transformations, the development of strategies for flood risk management and scientific and methodological support of the assessment and mapping of flood hazard and risk, taking into account the nature and the intensity of river bed transformation and exogenous processes in river basins of Ukraine. Outline of the main material. Systematic research on flood protection issues and river bed evolution in IWPaLR has been conducted since the middle of the last century. The problems of the dynamics of river bed’s evolutions, ensuring the stability of dams, erosion of the tail water of dam, development of active hydraulic structures and their arrangement in river beds, forecasting river bed evolution, runoffs, development study of permissible (nondestructive) flow velocities for alluvial soils, taking into account the phenomenon of self-patching of the river bed, the dynamic equilibrium of the beds, the typing of the beds of mountain rivers, etc., were studied and solved under the natural conditions and in the hydraulic laboratory of the Institute. Based on the results of theoretical and experimental studies of river bed evolution, a number of methodological provisions on the complex regulation of channel deformations and safe passage of high floods were formulated and published a number of regulatory and methodological documents on the calculation and forecasting of river bed transformations, designing of dams and protection structures. An important role was given to the issues of regulation and redistribution of floodwater by the system of river reservoirs and replenishment of groundwater reserves. The methodological recommendations for sampling of river bed deposits and sediments, on the base of the international ISO standards’ requirements and recommendations of have been developed at the Institute, as well as the method of estimation of the river bed transformation’s dynamics, for the discrete and quantitative assessments of river bed deformations and their intensity. The paper also highlights the main results of work on the implementation of the Flood Directive 2007/60/EC in Ukraine, in particular, the development of a Flood Risk Management Strategy in the Ukrainian Carpathian River basins. In the Strategy declared the latest approaches to flood response, which foresee the abandonment of the current paradigm of "flood protection" to favor integrated flood risk management. It defines national mechanisms of strategic management in the field of flood risk reduction, directions of transboundary cooperation, coordination of works within river basins. For the future development of this Strategy, the paper presents the scientific and methodological bases for a comprehensive assessment of the total levels of flood hazard and flood risk and their mapping on a GIS basis. Conclusion. In the future, scientific research on integrated flood risk management should focus on the study of patterns of evolution of river bed and development of mathematical models of regulation of channel deformations, improvement of the flood forecasting and prevention methodology based on simulation modeling, as well as the development new management schemes for runoff ‘s regulation.

2020 ◽  
Author(s):  
B. Thanga Gurusamy ◽  
Avinash D Vasudeo ◽  
Aniruddha Dattatraya Ghare

<p><strong>Abstract: </strong>Because of the uncertainty and high cost involved, the Absolute Flood Protection has not been considered as a rational decision. Hence the trend is to replace Absolute Flood Protection strategy by Flood Risk Management Strategy. This Paper focus on the development of Multiple Criteria Decision Making (MCDM) model towards Flood Risk Management (FRM) across Godavari Lower Sub-Basin of India using GIS based methodologies for Flood Hazard Zonation in order to achieve global minimum of the Flood predicted Risk level.  Flood Hazard Zone Map for the historical flood events obtained with the use of GIS based Digital Elevation Models across the study area have been presented and used for the estimation of Hazard Risk. Uncertainty (or Control) Risk levels of each Flood estimated using various Flood Forecasting methodologies have been compared for the selected locations of the study area. Effectiveness of Passive Flood Protection Measures in the form of Flood Levees has been quantitatively analyzed for the increase in the Opportunity Risk and corresponding reduction in the Flood Hazard Risk. Various types of Multi-Objective Evolutionary Algorithms (MOEAs) have been used  to determine a Compromise solution with conflicting criteria between Hazard Risk and Opportunity (or Investment) Risk and the results were compared for each of the selected levels of Flood estimated with corresponding uncertainty. Traditional optimization method in the form of Pareto-Optimal Front have also been graphically depicted for the minimization of both Hazard Risk Objective function and Opportunity Risk Objective Function and compared with those obtained using MOEAs. Watershed wise distribution of optimized Flood Risk variation across the Sub-basin has been presented graphically for both the cases of with and without active Flood Routing Measures. <strong>Keywords:  </strong>Flood Risk Management; GIS based Flood Hazard Zonation; Multi-Criteria Decision Making; Multi-Objective Evolutionary Algorithms; Godavari Lower Sub-Basin of India;</p>


Author(s):  
Marta Borowska-Stefańska ◽  
Szymon Wiśniewski

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Natural Hazard Science. Please check back later for the full article. Globally, floods cause widespread damage, especially in densely populated areas exposed to heavy land use. As a result, enormous financial expenditure is invested in flood protection and the mitigation of flood-related effects. Decisions on the allocation of resources to ensure flood protection are made on the determination of the costs entailed and the expected benefits that such actions may bring. From the economic point of view, the outlays incurred for flood protection should be outweighed by the expected results. For this reason, flood risk management is very important. Mitigation of flood-related loss should take into account a comprehensive spectrum of actions, from prevention and education, through measures taken during a flood, to strategies that help people return to normality once the disaster is over. In the 21st century there has been a radical change in the approach to the issue of flood protection (as seen in the 2007 Floods Directive)—it is no longer believed that there is such a thing as complete protection against flood, but that the damage and loss floods inflict can be mitigated, and since floods cannot be completely eradicated, societies must learn how to live with them. In the event of a flood, pre-prepared procedures to counteract and mitigate the effects of the disaster are followed, including evacuation of people and movable property from affected areas. Evacuation planning is meant to reduce the number of disaster-related fatalities and material losses. Crucially, this type of planning requires a well-defined, optimum evacuation policy for people/households within flood hazard areas. In addition, evacuation modeling is particularly important for authorities, planners, and other experts managing the process of evacuation, as it allows for more effective relocation of evacuees. Modeling can also facilitate the identification of bottlenecks within the transport system prior to the occurrence of a disaster, that is, the impact of flood-related road closures and the effects a phased evacuation has on traffic load, among other things, can be determined. Furthermore, not only may the ability to model alternative evacuation scenarios lead to the establishment of appropriate policies, evacuation strategies, and contingency plans, but it might also facilitate better communication and information flow.


2018 ◽  
Vol 44 ◽  
pp. 00037 ◽  
Author(s):  
Grzegorz Dumieński ◽  
Marcin Krzyżanowski ◽  
Andrzej Tiukało

For Polish municipalities – basic units of local government (LGU), flood constitutes a significant source of material losses resulting both from flood damages and from the costs of restoring the regular functioning of the municipalities after the disaster is gone. Authors stated a thesis that the municipality, despite its constitutional obligations connected with providing the safety for its citizens, is not capable to bear the financial burden shaping the flood protection system in the basin. It is, however, due to support the flood protection system by strengthening its adaptive potential and adaptive capacity for efficient limitation of adverse consequences of flood. To justify this thesis, the financial condition of the municipalities threatened with flood was compared to the size of potential flood losses for floods of the medium probability of occurrence (p = 1%). Authors have shown that the municipality’s structure, more than its budget size decides about its financial potential. Especially the municipality’s own revenue is an evidence for the determined financial potential, at the same time, it can be a source of the undertaken actions in order to increase the level of the municipality’s adaptability in the context of flood hazard. Conducted analyses allow to shape the flood risk management policy, both at the municipal level and on a national scale.


2007 ◽  
Vol 56 (4) ◽  
pp. 87-95 ◽  
Author(s):  
A. Winterscheid

It is now commonly accepted that the management of flood risks has to be fulfilled within an integrated framework. About two decades ago flood risk was managed from a limited perspective predominantly by means of structural measures aimed at flood control. In contrast integrated flood risk management incorporates the complete management cycle consisting of the phases prevention, protection and preparedness. In theory it is a well described concept. In the stage of implementation, however, there is often a lack of support although a consistent policy framework exists. Consequently, the degree of implementation must be rated as inadequate in many cases. In particular this refers to the elements which focus on preparedness and prevention. The study to which this paper refers emphasises the means and potentials of scenario technique to foster the implementation of potentially appropriate measures and new societal arrangements when applied in the framework of integrated flood risk management. A literature review is carried out to reveal the state-of-the-art and the specific problem framework within which scenario technique is generally being applied. Subsequently, it is demonstrated that scenario technique is transferable to a policy making process in flood risk management that is integrated, sustainable and interactive. The study concludes with a recommendation for three applications in which the implementation of measures of flood damage prevention and preparedness is supported by scenario technique.


Author(s):  
Jean Margaret R. MERCADO ◽  
Akira KAWAMURA ◽  
Hideo AMAGUCHI ◽  
Christabel Jane C. PRUDENCIO-RUBIO

2021 ◽  
Author(s):  
◽  
Toni Kekez

Many river basins are experiencing frequent flooding events with significant economic and other losses due to intensive precipitation as well as other atmospheric and hydrological conditions. European Flood Directive defined flood risk as a combination of flooding probability and possible adverse consequences on people, assets, cultural heritage and environment. Flood risk management considers implementation of different measures for mitigation and prevention of possible negative consequences related to flooding. Uncertainty can strongly affect the flood risk management process, especially near and during the flood event. A framework is proposed for implementation of uncertainty related to behavior of the endangered system in the flood risk assessment, in order to improve the decision-making process during the flood emergency response. The proposed framework is validated on the City of Slavonski Brod pilot site, where the results demonstrated that there is a significant flood hazard still present due to possible weir failure, despite the improvement of flood defense measures. Furthermore, the results demonstrated how flood risk value can significantly decrease by properly evacuating the affected population. Flood risk management on a strategic level requires a monetary quantification of possible flood risk, which is performed by calculating expected annual damage (EAD) based on the combination of flooding event probability and corresponding damages. A semi-analytic methodology is presented for estimation of expected annual damage based on the factor graph model, which enables integration of entire probability space as well as flexibility in defining input data. Furthermore, a novel approach is presented for definition of annual damage distribution based on first and second statistical moment and by employing Beta distribution. By analyzing the annual damage distribution as well as impact of different sources of uncertainty, the results demonstrated that there is a significant impact of extreme events with low occurrence probability on the expected annual damage.


Sign in / Sign up

Export Citation Format

Share Document