damage distribution
Recently Published Documents


TOTAL DOCUMENTS

231
(FIVE YEARS 34)

H-INDEX

22
(FIVE YEARS 3)

Synlett ◽  
2022 ◽  
Author(s):  
Qing Li ◽  
Qi Wang ◽  
Yuan Yuan ◽  
Yulan Chen

Quantitative and real-time characterization of mechanically induced bond scission events taken place in polymeric hydrogels is essential to uncover their fracture mechanics. Herein, a class of mechanochemiluminescent swelling hydrogels have been synthesized through a facile micellar copolymerization method using chemiluminescent bis(adamantyl)-1,2-dioxetane (Ad) as a crosslinker. This design and synthetic strategy ensure intense mechanochemiluminescence from Ad located in a hydrophobic network inside micelles. Moreover, the mechanochemiluminescent colors can be tailored from blue to red by mixing variant acceptors. Taking advantages of the transient nature of dioxetane chemiluminescence, the damage distribution and crack evolution of the hydrogels can be visualized and analyzed with high spatial and temporal resolution. The results demonstrate the strengths of the Ad mechanophore and micellar copolymerization method in the study of damage evolution and fracture mechanism of swelling hydrogels.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7568
Author(s):  
Daniel Fernández ◽  
Alvaro Rodríguez-Prieto ◽  
Ana María Camacho

This paper investigates the effect that the selection of the die material generates on the extrusion process of bimetallic cylindrical billets combining a magnesium alloy core (AZ31B) and a titanium alloy sleeve (Ti6Al4V) of interest in aeronautical applications. A robust finite element model is developed to analyze the variation in the extrusion force, damage distribution, and wear using different die materials. The results show that die material is a key factor to be taken into account in multi-material extrusion processes. The die material selection can cause variations in the extrusion force from 8% up to 15%, changing the effect of the extrusion parameters, for example, optimum die semi-angle. Damage distribution in the extrudate is also affected by die material, mainly in the core. Lastly, die wear is the most affected parameter due to the different hardness of the materials, as well as due to the variations in the normal pressure and sliding velocity, finding critical values in the friction coefficient for which the die cannot be used for more than one forming stage because of the heavy wear suffered. These results can potentially be used to improve the efficiency of this kind of extrusion process and the quality of the extruded part that, along with the use of lightweight materials, can contribute to sustainable production approaches.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1194
Author(s):  
Ali Ahmed Salem ◽  
Kwan Yiew Lau ◽  
Wan Rahiman ◽  
Samir A. Al-Gailani ◽  
Zulkurnain Abdul-Malek ◽  
...  

Based on experiments and numerical analysis techniques, this paper aims to investigate the influence of the four different coating damage profiles on the performance of coated 33 kV porcelain insulator strings under polluted and clean surface conditions. The performance of the insulators coated with room temperature vulcanizing (RTV) under partial coating damage and undamaged coating was evaluated. The influence of humidity on pollution flashover was taken into consideration. The ring-shaped, fan-shaped, and random-shaped coating was applied following coating damage. The results showed that the flashover characteristic of the RTV-coated insulators had a significant difference as compared to the normal insulators. Electrical characteristics such as the flashover voltage, critical current, and surface resistance were significantly affected by coating damage distribution and humidity level on the insulators’ surface. The electric field and potential difference were analyzed as well using the finite element method (FEM). The initiation of the arc was observed to appear at the area of insulators where the electric field was the highest. It was also observed that different coating distributions of pollution and humidity levels resulted in a change in the surface pollution layer resistance and an uneven distribution of the electric field. This indicates that the coated insulators’ parameters are directly related to the coating damage distribution on the insulator surface, particularly in the presence of humidity.


2021 ◽  
Vol 4 (3) ◽  
pp. 196-212
Author(s):  
Taha Yasin Altıok ◽  
Ali Demir

Historical structures should be carefully preserved and transferred to the next generations. Therefore, their seismic performances should be investigated in detail. In the finite element method, many parameters affect the seismic behaviour and damage distribution in the structures. One of the most significant parameters is the Soil-Structure Interaction effect. In finite element analyses, the soil medium is generally neglected, and the structures' base is restrained by fixed supports. In this study, seismic response of a historical masonry minaret is investigated by considering the Soil-Structure Interaction and Operational Modal Analysis methods. To determine the effect of Soil-Structure Interaction on structural behaviour, the fixed supports, hard and soft soil mediums at the base of the structure are modelled. The material and failure behaviours are defined with the Concrete Damage Plasticity model. Displacements, principal stresses, damage rates, and damage distribution of models are obtained with nonlinear time history analyses. According to the results, the interstory drift increases due to the decrease in the stiffness of the soil media. In addition, the fixed supports model was damaged more tensile stress damage than the other models. The least occurred in the soft soil model. It is concluded that the Soil-Structure Interaction effect significantly affects structural behaviour, especially the damage rate and distribution.


2021 ◽  
Author(s):  
Peng Mao ◽  
Mingrui Duan ◽  
Smitha Sivapragasam ◽  
Jacob S Antony ◽  
Jenna Ulibarri ◽  
...  

DNA base damage arises frequently in living cells and needs to be removed by base excision repair (BER) to prevent mutagenesis and genome instability. Both the formation and repair of base damage occur in chromatin and are conceivably affected by DNA-binding proteins such as transcription factors (TFs). However, to what extent TF binding affects base damage distribution and BER in cells is unclear. Here, we used a genome-wide damage mapping method, N-methylpurine-sequencing (NMP-seq), to characterize alkylation damage distribution and BER at TF binding sites in yeast cells treated with the alkylating agent methyl methanesulfonate (MMS). Our data shows that alkylation damage formation was mainly suppressed at the binding sites of yeast TFs Abf1 and Reb1, but individual hotspots with elevated damage levels were also found. Additionally, Abf1 and Reb1 binding strongly inhibits BER in vivo and in vitro, causing slow repair both within the core motif and its adjacent DNA. The observed effects are caused by the TF-DNA interaction, because damage formation and BER can be restored by depletion of Abf1 or Reb1 protein from the nucleus. Thus, our data reveal that TF binding significantly modulates alkylation base damage formation and inhibits repair by the BER pathway. The interplay between base damage formation and BER may play an important role in affecting mutation frequency in gene regulatory regions.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Sicong Hu ◽  
Zheyan Wang ◽  
Yu Guo ◽  
Gui Xiao

Bridges in a marine environment have been suffering from the chloride attack for a long period of time. Due to the fact that different sections of piers may be exposed to different conditionals, the chloride-induced corrosion not only affects the scale of the deterioration process but also significantly modifies over time the damage propagation mechanisms and the seismic damage distribution. In order to investigate the seismic damage of existing RC bridges subject to spatial chloride-induced corrosion in a marine environment, Duracrete model is applied to determine the corrosion initiation time of reinforcing steels under different exposure conditionals and the degradation models of reinforcing steels, confined concrete, and unconfined concrete are obtained based on the previous investigation. According to the seismic fragility assessment method, the damage assessment approach for the existing RC bridges subject to spatial chloride-induced corrosion in a marine environment is present. Moreover, a case study of a bridge under two kinds of water regions investigated the influence of spatial chloride-induced corrosion on the seismic damage of piers and other components. The results show that the spatial chloride-induced corrosion may result in the section at the low water level becoming more vulnerable than the adjacent sections and the alteration of seismic damage distribution of piers. The corrosion of pier will increase the seismic damage probability of itself, whereas it will result in a reduction of seismic damage probability of other components. Moreover, the alteration of seismic damage distribution of piers will amplify the effect. Due to the fact that the spatial chloride-induced corrosion of piers may alter the yield sequence of cross section, it then affects the seismic performance assessment of piers. A method to determine the evolution probability of yield sequence of corroded piers is proposed at last. From the result, the evolution probability of yield sequence of piers in longitudinal direction depends on the relationship between the height of piers and submerged zone. Moreover, the height of piers, submerged zone, and tidal zone have a common influence on the evolution of yield sequence of piers in transversal direction.


Sign in / Sign up

Export Citation Format

Share Document