Study on the effect of vacuum sealing drainage on the repair process of rabbit sciatic nerve injury

2014 ◽  
Vol 125 (11) ◽  
pp. 855-860 ◽  
Author(s):  
Chao Hu ◽  
Taogen Zhang ◽  
Zhouming Deng ◽  
Bin Ren ◽  
Lin Cai ◽  
...  
2021 ◽  
Vol 37 (1) ◽  
Author(s):  
Elisabeth Orozco ◽  
Koichi Masuda ◽  
Sameer B. Shah

Abstract Background Peripheral nerve damage can have debilitating consequences. Rabbit sciatic nerve transection models allow the effective evaluation of surgical repair strategies for large nerve gaps. Despite advantages in size, ease of handling, and functional utility, rabbits can suffer from a number of side effects that affect animal welfare and the quality of scientific inquiry. Such side-effects, which include pressure ulcers and traumatic damage to the foot, are primarily a consequence of insensitivity of the distal hindlimb following sciatic nerve injury. In this study, we present a number of methodologies for identifying, treating, and preventing unintended adverse effects in rabbit sciatic nerve injury models. Results First, we categorize pressure ulcers according to their severity and describe the deployment of a padded bandaging technique to enable ulcer healing. We also introduce a proactive bandaging approach to reduce the likelihood of pressure ulcer formation. Second, we define phenotypes that distinguish between foot injuries resulting from self-mutilation (autotomy) from those caused by incidental traumatic injury secondary to sensori-motor damage. Finally, we detail an effective strategy to reduce the usage of Elizabethan collars; through a gradual weaning protocol, their usefulness in preventing autotomy is retained, while their propensity to impede rabbit grooming and cause abrasion-injury to the neck region is minimized. Conclusions We suggest that application of these methods offer a practical and systematic approach to avoid adverse side effects associated with rabbit sciatic nerve damage, enabling improved animal welfare and scientific outcomes in a powerful nerve injury model.


2020 ◽  
Vol 14 (4) ◽  
pp. 263-269
Author(s):  
A. A. Starinets ◽  
E. L. Egorova ◽  
A. A. Tyrtyshnaia ◽  
I. V. Dyuisen ◽  
A. N. Baryshev ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Diego Noé Rodríguez-Sánchez ◽  
Giovana Boff Araujo Pinto ◽  
Luciana Politti Cartarozzi ◽  
Alexandre Leite Rodrigues de Oliveira ◽  
Ana Livia Carvalho Bovolato ◽  
...  

Abstract Background Nerve injuries are debilitating, leading to long-term motor deficits. Remyelination and axonal growth are supported and enhanced by growth factor and cytokines. Combination of nerve guidance conduits (NGCs) with adipose-tissue-derived multipotent mesenchymal stromal cells (AdMSCs) has been performing promising strategy for nerve regeneration. Methods 3D-printed polycaprolactone (PCL)-NGCs were fabricated. Wistar rats subjected to critical sciatic nerve damage (12-mm gap) were divided into sham, autograft, PCL (empty NGC), and PCL + MSCs (NGC multi-functionalized with 106 canine AdMSCs embedded in heterologous fibrin biopolymer) groups. In vitro, the cells were characterized and directly stimulated with interferon-gamma to evaluate their neuroregeneration potential. In vivo, the sciatic and tibial functional indices were evaluated for 12 weeks. Gait analysis and nerve conduction velocity were analyzed after 8 and 12 weeks. Morphometric analysis was performed after 8 and 12 weeks following lesion development. Real-time PCR was performed to evaluate the neurotrophic factors BDNF, GDNF, and HGF, and the cytokine and IL-10. Immunohistochemical analysis for the p75NTR neurotrophic receptor, S100, and neurofilament was performed with the sciatic nerve. Results The inflammatory environment in vitro have increased the expression of neurotrophins BDNF, GDNF, HGF, and IL-10 in canine AdMSCs. Nerve guidance conduits multi-functionalized with canine AdMSCs embedded in HFB improved functional motor and electrophysiological recovery compared with PCL group after 12 weeks. However, the results were not significantly different than those obtained using autografts. These findings were associated with a shift in the regeneration process towards the formation of myelinated fibers. Increased immunostaining of BDNF, GDNF, and growth factor receptor p75NTR was associated with the upregulation of BDNF, GDNF, and HGF in the spinal cord of the PCL + MSCs group. A trend demonstrating higher reactivity of Schwann cells and axonal branching in the sciatic nerve was observed, and canine AdMSCs were engrafted at 30 days following repair. Conclusions 3D-printed NGCs multi-functionalized with canine AdMSCs embedded in heterologous fibrin biopolymer as cell scaffold exerted neuroregenerative effects. Our multimodal approach supports the trophic microenvironment, resulting in a pro-regenerative state after critical sciatic nerve injury in rats.


2021 ◽  
Vol 145 ◽  
pp. 104984
Author(s):  
Christopher R. Richmond ◽  
Laurel L. Ballantyne ◽  
A. Elizabeth de Guzman ◽  
Brian J. Nieman ◽  
Colin D. Funk ◽  
...  

2014 ◽  
Vol 564 ◽  
pp. 27-31 ◽  
Author(s):  
Masahiro Ohsawa ◽  
Junpei Mutoh ◽  
Shohei Yamamoto ◽  
Hiroaki Hisa

2009 ◽  
Vol 31 (5) ◽  
pp. 441-452 ◽  
Author(s):  
Hung-Chuan Pan ◽  
Fu-Chou Cheng ◽  
Chun-Jung Chen ◽  
Shu-Zhen Lai ◽  
Mu-Jung Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document