In Vitro Susceptibility of Respiratory Isolates of Aspergillus species to Itraconazole and Amphotericin B. Acquired Resistance to Itraconazole

1997 ◽  
Vol 29 (5) ◽  
pp. 509-512 ◽  
Author(s):  
Erja Chryssanthou
1996 ◽  
Vol 42 (9) ◽  
pp. 960-964 ◽  
Author(s):  
Elias K. Manavathu ◽  
George J. Alangaden ◽  
Stephen A. Lerner

The effects of inoculum size, medium, temperature, and duration of growth on the in vitro susceptibility testing of Aspergillus fumigatus were investigated using broth micro- and macro-dilution techniques. The minimum inhibitory concentrations (MICs) of ketoconazole, miconazole, itraconazole, fluconazole, and amphotericin B were significantly influenced by the inoculum size, regardless of the techniques used. Two- to four-fold higher MIC values were obtained when the inoculum size was increased 100-fold. The use of peptone yeast extract glucose and RPMI 1640 media provided essentially identical MIC values at 30 and 35 °C after incubation for 48 h or longer. A comparison of broth micro- and macro-dilution techniques revealed that, under equivalent conditions, the latter with an inoculum size between 1 × 103and 1 × 104conidia (strain W73355)/mL consistently provided the lowest MICs of fluconazole (256 μg/mL), ketoconazole (8 μg/mL), miconazole (2 μg/mL), itraconazole (0.25 μg/mL), and amphotericin B (0.25 μg/mL). Using the broth macrodilution technique, we screened 24 clinical isolates of A. fumigatus obtained from the Detroit Medical Center in 1994. The MIC values of fluconazole, ketoconazole, miconazole, itraconazole and amphotericin B for all the isolates were 128–256, 8–16, 1–2, 0.25–0.5, and 0.25–1.0 μg/mL, respectively, indicating that none of the clinical isolates that we tested shows acquired resistance to the antifungals used.Key words: Aspergillus fumigatus, susceptibility test, antifungals, drug resistance, broth macrodilution.


1999 ◽  
Vol 45 (10) ◽  
pp. 871-874 ◽  
Author(s):  
Eric Dannaoui ◽  
Florence Persat ◽  
Marie-France Monier ◽  
Elisabeth Borel ◽  
Marie-Antoinette Piens ◽  
...  

A comparative study of visual and spectrophotometric MIC endpoint determinations for antifungal susceptibility testing of Aspergillus species was performed. A broth microdilution method adapted from the National Committee for Clinical Laboratory Standards (NCCLS) was used for susceptibility testing of 180 clinical isolates of Aspergillus species against amphotericin B and itraconazole. MICs were determined visually and spectrophotometrically at 490 nm after 24, 48, and 72h of incubation, and MIC pairs were compared. The agreement between the two methods was 99% for amphotericin B and ranged from 95 to 98% for itraconazole. It is concluded that spectrophotometric MIC endpoint determination is a valuable alternative to the visual reference method for susceptibility testing of Aspergillus species.Key words: antifungal, susceptibility testing, Aspergillus, spectrophotometric reading.


1998 ◽  
Vol 36 (9) ◽  
pp. 2690-2695 ◽  
Author(s):  
Jose A. Vazquez ◽  
Maria T. Arganoza ◽  
Dina Boikov ◽  
Stephanie Yoon ◽  
Jack D. Sobel ◽  
...  

The fungicidal activity of amphotericin B (AmB) was quantitated for several Candida species. Candida albicans andC. tropicalis were consistently susceptible to AmB, with less than 1% survivors after 6 h of exposure to AmB. C. parapsilosis and variants of C. lusitaniae andC. guilliermondii were the most resistant, demonstrating 50 to 90% survivors in this time period and as high as 1% survival after a 24-h exposure time. All Candida species were killed (<1% survivors) after 24 h of exposure to AmB. In contrast, overnight exposure to either fluconazole or itraconazole resulted in pronounced increases in resistance to subsequent exposures to AmB. Most dramatically, C. albicans was able to grow in AmB cultures after azole preexposure. Several other Candida species did not grow in AmB but showed little or no reduction in viability after up to 24 h in AmB. Depending on the growth conditions,Candida cells preexposed to azoles may retain AmB resistance for days after the azoles have been removed. If this in vitro antagonism applies to the clinical setting, treatment of patients with certain antifungal combinations may not be beneficial. The ability of some Candida isolates to survive transient exposures to AmB was not reflected in the in vitro susceptibility changes as measured by standard MIC assays. This finding should be considered in studies attempting to correlate patient outcome with in vitro susceptibilities of clinical fungal isolates. Patients who fail to respond to AmB may be infected with isolates that are classified as susceptible by standard in vitro assays but that may be resistant to transient antifungal exposures which may be more relevant in the clinical setting.


2009 ◽  
Vol 19 (4) ◽  
pp. 241-247
Author(s):  
L. Galgóczy ◽  
L. Ördögh ◽  
M. Virágh ◽  
T. Papp ◽  
Cs. Vágvölgyi

2003 ◽  
Vol 37 (3) ◽  
pp. 420-432 ◽  
Author(s):  
Margaret M Pearson ◽  
P David Rogers ◽  
John D Cleary ◽  
Stanley W Chapman

OBJECTIVE: To review the pharmacology, in vitro susceptibility, pharmacokinetics, clinical efficacy, and adverse effects of voriconazole, a triazole antifungal agent. DATA SOURCES: A MEDLINE search, restricted to English language, was conducted from 1990 to June 2002. Supplementary sources included program abstracts from the Interscience Conference on Antimicrobial Agents and Chemotherapy and the Infectious Diseases Society of America from 1996 to 2001 and manufacturer information available through the Food and Drug Administration's Web site. DATA EXTRACTION: All published and unpublished trials and abstracts citing voriconazole were selected. DATA SYNTHESIS: Voriconazole has shown in vitro activity against many yeasts and a variety of mold and dermatophyte isolates. Voriconazole can be administered either orally or parenterally. It exhibits good oral bioavailability, wide tissue distribution including distribution into the central nervous system, and hepatic metabolism. Drug interactions occur through inhibition of the CYP2C9, CYP2C19, and CYP3A4 isoenzymes, resulting in alterations in kinetic parameters of either voriconazole or the interacting agent. Efficacy has been illustrated in open, noncomparative studies of aspergillosis in immunocompromised patients. Human case reports describe successful treatment of rare fungal pathogens. The most commonly reported adverse events include visual disturbances and elevations in liver function tests. CONCLUSIONS: Voriconazole is at least as effective as amphotericin B in the treatment of acute invasive aspergillosis in immunocompromised patients. It has similar efficacy as fluconazole in treatment of esophageal candidiasis. Voriconazole did not achieve statistical non-inferiority to liposomal amphotericin B for empirical therapy in patients with neutropenia and persistent fever, diminishing enthusiasm for use in this indication until additional trials are completed. Based on case reports and in vitro efficacy, voriconazole may prove to be a clinically useful agent in the treatment of other fungal disease.


2006 ◽  
Vol 5 (10) ◽  
pp. 1705-1712 ◽  
Author(s):  
S. Arunmozhi Balajee ◽  
David Nickle ◽  
Janos Varga ◽  
Kieren A. Marr

ABSTRACT Aspergillus fumigatus has been understood to be the most common cause of invasive aspergillosis (IA) in all epidemiological surveys. However, recent studies have uncovered a large degree of genetic heterogeneity between isolates morphologically identified as A. fumigatus, leading to the description of a new species, Aspergillus lentulus. Here, we examined the genetic diversity of clinical isolates identified as A. fumigatus using restriction enzyme polymorphism analysis and sequence-based identification. Analysis of 50 clinical isolates from geographically diverse locations recorded the presence of at least three distinct species: A. lentulus, Aspergillus udagawae, and A. fumigatus. In vitro, A. lentulus isolates demonstrated decreased susceptibility to antifungal drugs currently used for IA, including amphotericin B, voriconazole, and caspofungin; A. udagawae isolates demonstrated decreased in vitro susceptibility to amphotericin B. Results of the present study demonstrate that current phenotypic methods to identify fungi do not differentiate between genetically distinct species in the A. fumigatus group. Differential antifungal susceptibilities of these species may account for some of the reported poor outcomes of therapy in clinical studies.


2002 ◽  
Vol 46 (5) ◽  
pp. 1583-1585 ◽  
Author(s):  
Gloria M. González ◽  
Rolando Tijerina ◽  
Deanna A. Sutton ◽  
John R. Graybill ◽  
Michael G. Rinaldi

ABSTRACT We investigated the susceptibilities of hyphal, mixed hyphal, ungerminated arthroconidial, and germinated arthroconidial populations of Coccidioides immitis to lipid formulations of amphotericin B and nystatin and their conventional preparations, utilizing the National Committee for Clinical Laboratory Standards M38-P broth macrodilution method. The differences in effects of the three different growth stages of the saprobic phase of C. immitis on the MIC/minimum lethal concentration (MLC) ratio were not statistically significant for any of the antifungal agents tested. These results suggest that either inocula could be used for in vitro susceptibility studies with C. immitis.


Sign in / Sign up

Export Citation Format

Share Document