Neural correlates of motor impairment during motor imagery and motor execution in sub-cortical stroke

Brain Injury ◽  
2013 ◽  
Vol 27 (6) ◽  
pp. 651-663 ◽  
Author(s):  
Wan-Wa Wong ◽  
Suk-Tak Chan ◽  
Kwok-Wing Tang ◽  
Fei Meng ◽  
Kai-Yu Tong
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Alkinoos Athanasiou ◽  
Chrysa Lithari ◽  
Konstantina Kalogianni ◽  
Manousos A. Klados ◽  
Panagiotis D. Bamidis

Introduction. Sensorimotor cortex is activated similarly during motor execution and motor imagery. The study of functional connectivity networks (FCNs) aims at successfully modeling the dynamics of information flow between cortical areas.Materials and Methods. Seven healthy subjects performed 4 motor tasks (real foot, imaginary foot, real hand, and imaginary hand movements), while electroencephalography was recorded over the sensorimotor cortex. Event-Related Desynchronization/Synchronization (ERD/ERS) of the mu-rhythm was used to evaluate MI performance. Source detection and FCNs were studied with eConnectome.Results and Discussion. Four subjects produced similar ERD/ERS patterns between motor execution and imagery during both hand and foot tasks, 2 subjects only during hand tasks, and 1 subject only during foot tasks. All subjects showed the expected brain activation in well-performed MI tasks, facilitating cortical source estimation. Preliminary functional connectivity analysis shows formation of networks on the sensorimotor cortex during motor imagery and execution.Conclusions. Cortex activation maps depict sensorimotor cortex activation, while similar functional connectivity networks are formed in the sensorimotor cortex both during actual and imaginary movements. eConnectome is demonstrated as an effective tool for the study of cortex activation and FCN. The implementation of FCN in motor imagery could induce promising advancements in Brain Computer Interfaces.


2018 ◽  
Vol 32 (8) ◽  
pp. 691-700 ◽  
Author(s):  
Leonardo Boccuni ◽  
Sarah Meyer ◽  
Simon S. Kessner ◽  
Nele De Bruyn ◽  
Bea Essers ◽  
...  

Background. Proportional motor recovery in the upper limb has been investigated, indicating about 70% of the potential for recovery of motor impairment within the first months poststroke. Objective. To investigate whether the proportional recovery rule is applicable for upper-limb somatosensory impairment and to study underlying neural correlates of impairment and outcome at 6 months. Methods. A total of 32 patients were evaluated at 4 to 7 days and 6 months using the Erasmus MC modification of the revised Nottingham Sensory Assessment (NSA) for impairment of (1) somatosensory perception (exteroception) and (2) passive somatosensory processing (sharp/blunt discrimination and proprioception); (3) active somatosensory processing was evaluated using the stereognosis component of the NSA. Magnetic resonance imaging scans were obtained within 1 week poststroke, from which lesion load (LL) was calculated for key somatosensory tracts. Results. Somatosensory perception fully recovered within 6 months. Passive and active somatosensory processing showed proportional recovery of 86% (95% CI = 79%-93%) and 69% (95% CI = 49%-89%), respectively. Patients with somatosensory impairment at 4 to 7 days showed significantly greater thalamocortical and insulo-opercular tracts (TCT and IOT) LL ( P < .05) in comparison to patients without impairment. Sensorimotor tract disruption at 4 to 7 days did not provide significant contribution above somatosensory processing score at 4 to 7 days when predicting somatosensory processing outcome at 6 months. Conclusions. Our sample of stroke patients assessed early showed full somatosensory perception but proportional passive and active somatosensory processing recovery. Disruption of both the TCT and IOT early after stroke appears to be a factor associated with somatosensory impairment but not outcome.


2020 ◽  
Vol 12 ◽  
Author(s):  
Li Wang ◽  
Ye Zhang ◽  
Jingna Zhang ◽  
Linqiong Sang ◽  
Pengyue Li ◽  
...  

Brain ◽  
2012 ◽  
Vol 135 (2) ◽  
pp. 582-595 ◽  
Author(s):  
Estelle Raffin ◽  
Jérémie Mattout ◽  
Karen T. Reilly ◽  
Pascal Giraux

2010 ◽  
Vol 107 (9) ◽  
pp. 4430-4435 ◽  
Author(s):  
K. J. Miller ◽  
G. Schalk ◽  
E. E. Fetz ◽  
M. den Nijs ◽  
J. G. Ojemann ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Linda Confalonieri ◽  
Giuseppe Pagnoni ◽  
Lawrence W. Barsalou ◽  
Justin Rajendra ◽  
Simon B. Eickhoff ◽  
...  

Aims. While studies on healthy subjects have shown a partial overlap between the motor execution and motor imagery neural circuits, few have investigated brain activity during motor imagery in stroke patients with hemiparesis. This work is aimed at examining similarities between motor imagery and execution in a group of stroke patients. Materials and Methods. Eleven patients were asked to perform a visuomotor tracking task by either physically or mentally tracking a sine wave force target using their thumb and index finger during fMRI scanning. MIQ-RS questionnaire has been administered. Results and Conclusion. Whole-brain analyses confirmed shared neural substrates between motor imagery and motor execution in bilateral premotor cortex, SMA, and in the contralesional inferior parietal lobule. Additional region of interest-based analyses revealed a negative correlation between kinaesthetic imagery ability and percentage BOLD change in areas 4p and 3a; higher imagery ability was associated with negative and lower percentage BOLD change in primary sensorimotor areas during motor imagery.


Sign in / Sign up

Export Citation Format

Share Document