Deep white matter hyperintensities affect verbal memory independent of PTSD symptoms in veterans with mild traumatic brain injury

Brain Injury ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 864-871 ◽  
Author(s):  
Alexandra L. Clark ◽  
Scott F. Sorg ◽  
Dawn M. Schiehser ◽  
Norman Luc ◽  
Mark W. Bondi ◽  
...  
Author(s):  
Scott F. Sorg ◽  
Victoria C. Merritt ◽  
Alexandra L. Clark ◽  
Madeleine L. Werhane ◽  
Kelsey A. Holiday ◽  
...  

Abstract Objective: We examined whether intraindividual variability (IIV) across tests of executive functions (EF-IIV) is elevated in Veterans with a history of mild traumatic brain injury (mTBI) relative to military controls (MCs) without a history of mTBI. We also explored relationships among EF-IIV, white matter microstructure, and posttraumatic stress disorder (PTSD) symptoms. Method: A total of 77 Veterans (mTBI = 43, MCs = 34) completed neuropsychological testing, diffusion tensor imaging (DTI), and PTSD symptom ratings. EF-IIV was calculated as the standard deviation across six tests of EF, along with an EF-Mean composite. DSI Studio connectometry analysis identified white matter tracts significantly associated with EF-IIV according to generalized fractional anisotropy (GFA). Results: After adjusting for EF-Mean and PTSD symptoms, the mTBI group showed significantly higher EF-IIV than MCs. Groups did not differ on EF-Mean after adjusting for PTSD symptoms. Across groups, PTSD symptoms significantly negatively correlated with EF-Mean, but not with EF-IIV. EF-IIV significantly negatively correlated with GFA in multiple white matter pathways connecting frontal and more posterior regions. Conclusions: Veterans with mTBI demonstrated significantly greater IIV across EF tests compared to MCs, even after adjusting for mean group differences on those measures as well as PTSD severity. Findings suggest that, in contrast to analyses that explore effects of mean performance across tests, discrepancy analyses may capture unique variance in neuropsychological performance and more sensitively capture cognitive disruption in Veterans with mTBI histories. Importantly, findings show that EF-IIV is negatively associated with the microstructure of white matter pathways interconnecting cortical regions that mediate executive function and attentional processes.


Brain Injury ◽  
2016 ◽  
Vol 30 (12) ◽  
pp. 1501-1514 ◽  
Author(s):  
Ramtilak Gattu ◽  
Faith W. Akin ◽  
Anthony T. Cacace ◽  
Courtney D. Hall ◽  
Owen D. Murnane ◽  
...  

2003 ◽  
Vol 4 (2) ◽  
pp. 155-167 ◽  
Author(s):  
Karleigh Jayne Kwapil ◽  
Gina Geffen ◽  
Ken McFarland ◽  
Veronica Eileen DeMonte

AbstractThe present study aimed to determine whether including a sensitive test of immediate and delayed recall would improve the diagnostic validity of the Rapid Screen of Concussion (RSC) in mild Traumatic Brain Injury (mTBI) versus orthopaedic clinical samples. Two studies were undertaken. In Study 1, the performance of 156 mTBI and 145 orthopaedic participants was analysed to identify the number of individuals who performed at ceiling on the verbal memory subtest of the RSC, as this test required immediate and delayed recall of only five words. A second aim was to determine the sensitivity and specificity levels of the RSC. Study 2 aimed to examine whether replacement of the verbal memory subtest with the 12-word Hopkins Verbal Learning Test (HVLT) could improve the sensitivity of the RSC in a new sample of 26 mTBI and 30 orthopaedic participants. Both studies showed that orthopaedic participants outperformed mTBI participants on each of the selected measures. Study 1 showed that 14% of mTBI participants performed at ceiling on the immediate and 21.2% on delayed recall test. Performance on the original battery yielded a sensitivity of 82%, specificity of 80% and overall correct classification of 81.5% participants. In Study 2, inclusion of the HVLT improved sensitivity to a level of 88.5%, decreased specificity to a level of 70% and resulted in an overall classification rate of 80%. It was concluded that although inclusion of the five-word subtest in the RSC can successfully distinguish concussed from non-concussed individuals, use of the HVLT in this protocol yields a more sensitive measure of subtle cognitive deficits following mTBI.


Brain ◽  
2014 ◽  
Vol 137 (7) ◽  
pp. 1876-1882 ◽  
Author(s):  
Tero Ilvesmäki ◽  
Teemu M. Luoto ◽  
Ullamari Hakulinen ◽  
Antti Brander ◽  
Pertti Ryymin ◽  
...  

2017 ◽  
Vol 34 (2) ◽  
pp. 291-299 ◽  
Author(s):  
Juan J. Herrera ◽  
Kurt Bockhorst ◽  
Shakuntala Kondraganti ◽  
Laura Stertz ◽  
João Quevedo ◽  
...  

2021 ◽  
Author(s):  
Paulo Branco ◽  
Noam Bosak ◽  
Jannis Bielefeld ◽  
Olivia Cong ◽  
Yelena Granovsky ◽  
...  

Mild traumatic brain injury, mTBI, is a leading cause of disability worldwide, with acute pain manifesting as one of its most debilitating symptoms. Understanding acute post-injury pain is important since it is a strong predictor of long-term outcomes. In this study, we imaged the brains of 172 patients with mTBI, following a motorized vehicle collision and used a machine learning approach to extract white matter structural and resting state fMRI functional connectivity measures to predict acute pain. Stronger white matter tracts within the sensorimotor, thalamic-cortical, and default-mode systems predicted 20% of the variance in pain severity within 72 hours of the injury. This result generalized in two independent groups: 39 mTBI patients and 13 mTBI patients without whiplash symptoms. White matter measures collected at 6-months after the collision still predicted mTBI pain at that timepoint (n = 36). These white-matter connections were associated with two nociceptive psychophysical outcomes tested at a remote body site – namely conditioned pain modulation and magnitude of suprathreshold pain–, and with pain sensitivity questionnaire scores. Our validated findings demonstrate a stable white-matter network, the properties of which determine a significant amount of pain experienced after acute injury, pinpointing a circuitry engaged in the transformation and amplification of nociceptive inputs to pain perception.


2016 ◽  
Vol 33 (22) ◽  
pp. 2000-2010 ◽  
Author(s):  
Elisabeth A. Wilde ◽  
Xiaoqi Li ◽  
Jill V. Hunter ◽  
Ponnada A. Narayana ◽  
Khader Hasan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document