Germ Cell–Specific Methylation Pattern: Erasure and Reestablishment

Author(s):  
Nina J. Kossack ◽  
Renee A. Reijo Pera ◽  
Shawn L. Chavez
2007 ◽  
Vol 30 (4) ◽  
pp. 90
Author(s):  
Kirsten Niles ◽  
Sophie La Salle ◽  
Christopher Oakes ◽  
Jacquetta Trasler

Background: DNA methylation is an epigenetic modification involved in gene expression, genome stability, and genomic imprinting. In the male, methylation patterns are initially erased in primordial germ cells (PGCs) as they enter the gonadal ridge; methylation patterns are then acquired on CpG dinucleotides during gametogenesis. Correct pattern establishment is essential for normal spermatogenesis. To date, the characterization and timing of methylation pattern acquisition in PGCs has been described using a limited number of specific gene loci. This study aimed to describe DNA methylation pattern establishment dynamics during male gametogenesis through global methylation profiling techniques in a mouse model. Methods: Using a chromosome based approach, primers were designed for 24 regions spanning chromosome 9; intergenic, non-repeat, non-CpG island sequences were chosen for study based on previous evidence that these types of sequences are targets for testis-specific methylation events. The percent methylation was determined in each region by quantitative analysis of DNA methylation using real-time PCR (qAMP). The germ cell-specific pattern was determined by comparing methylation between spermatozoa and liver. To examine methylation in developing germ cells, spermatogonia from 2 day- and 6 day-old Oct4-GFP (green fluorescent protein) mice were isolated using fluorescence activated cell sorting. Results: As compared to liver, four loci were hypomethylated and five loci were hypermethylated in spermatozoa, supporting previous results indicating a unique methylation pattern in male germ cells. Only one region was hypomethylated and no regions were hypermethylated in day 6 spermatogonia as compared to mature spermatozoa, signifying that the bulk of DNA methylation is established prior to type A spermatogonia. The methylation in day 2 spermatogonia, germ cells that are just commencing mitosis, revealed differences of 15-20% compared to day 6 spermatogonia at five regions indicating that the most crucial phase of DNA methylation acquisition occurs prenatally. Conclusion: Together, these studies provide further evidence that germ cell methylation patterns differ from those in somatic tissues and suggest that much of methylation at intergenic sites is acquired during prenatal germ cell development. (Supported by CIHR)


Reproduction ◽  
2012 ◽  
Vol 143 (5) ◽  
pp. 597-609 ◽  
Author(s):  
Zachary Yu-Ching Lin ◽  
Masanori Imamura ◽  
Chiaki Sano ◽  
Ryusuke Nakajima ◽  
Tomoko Suzuki ◽  
...  

Germ cell development is a fundamental process required to produce offspring. The developmental program of spermatogenesis has been assumed to be similar among mammals. However, recent studies have revealed differences in the molecular properties of primate germ cells compared with the well-characterized mouse germ cells. This may prevent simple application of rodent insights into higher primates. Therefore, thorough investigation of primate germ cells is necessary, as this may lead to the development of more appropriate animal models. The aim of this study is to define molecular signatures of spermatogenic cells in the common marmoset, Callithrix jacchus. Interestingly, NANOG, PRDM1, DPPA3 (STELLA), IFITM3, and ZP1 transcripts, but no POU5F1 (OCT4), were detected in adult marmoset testis. Conversely, mouse testis expressed Pou5f1 but not Nanog, Prdm1, Dppa3, Ifitm3, and Zp1. Other previously described mouse germ cell markers were conserved in marmoset and mouse testes. Intriguingly, marmoset spermatogenic cells underwent dynamic protein expression in a developmental stage-specific manner; DDX4 (VASA) protein was present in gonocytes, diminished in spermatogonial cells, and reexpressed in spermatocytes. To investigate epigenetic differences between adult marmoset and mice, DNA methylation analyses identified unique epigenetic profiles to marmoset and mice. Marmoset NANOG and POU5F1 promoters in spermatogenic cells exhibited a methylation status opposite to that in mice, while the DDX4 and LEFTY1 loci, as well as imprinted genes, displayed an evolutionarily conserved methylation pattern. Marmosets have great advantages as models for human reproductive biology and are also valuable as experimental nonhuman primates; thus, the current study provides an important platform for primate reproductive biology, including possible applications to humans.


Cryobiology ◽  
2018 ◽  
Vol 85 ◽  
pp. 174-175
Author(s):  
David G. Valcarce ◽  
Marta F. Riesco ◽  
Juan Manuel Martínez ◽  
Vanesa Robles

Author(s):  
Judy Ju-Hu Chiang ◽  
Robert Kuo-Cheng Chen

Germ cells from the rice stem borer Chilo suppresalis, were examined by light and electron microscopy. Damages to organelles within the germ cells were observed. The mitochondria, which provide the cell with metabolic energy, were seen to disintegrate within the germ cell. Lysosomes within the germ cell were also seen to disintegrate. The subsequent release of hydrolytic enzymesmay be responsible for the destruction of organelles within the germ cell. Insect spermatozoa were seen to lose the ability to move because of radiation treatment. Damage to the centrioles, one of which is in contact with the tail, may be involved in causing sperm immobility.


2005 ◽  
Vol 173 (4S) ◽  
pp. 119-119 ◽  
Author(s):  
Gerald Puehse ◽  
Armin Secker ◽  
Sebastian Kemper ◽  
Lothar Hertle ◽  
Sabine Kliesch

2001 ◽  
Vol 40 (4) ◽  
pp. 536-540 ◽  
Author(s):  
Finn Edler von Eyben ◽  
Ebbe Lindegaard Madsen ◽  
Ole Blaabjerg ◽  
Per Hyltoft Petersen ◽  
Hans von der Maase ◽  
...  

2002 ◽  
Vol 20 (4) ◽  
pp. 244-250 ◽  
Author(s):  
Charles J. Ryan ◽  
Dean F. Bajorin
Keyword(s):  

2010 ◽  
Vol 222 (03) ◽  
Author(s):  
B Steiger ◽  
O Schmidt ◽  
T Pietsch

Sign in / Sign up

Export Citation Format

Share Document