scholarly journals A reductionist reading of Husserl’s phenomenology by Mach’s descriptivism and phenomenalism

2020 ◽  
Author(s):  
Vasil Penchev

<div>Husserl’s phenomenology is what is used, and then the conception of “bracketing reality” is modelled to generalize Peano arithmetic in its relation to set theory in the foundation of mathematics. The obtained model is equivalent to the generalization of Peano arithmetic by means of replacing the axiom of induction with that of transfinite induction.</div><div><br></div><div>A comparison to Mach’s doctrine is used to be revealed the fundamental and philosophical reductionism of Husserl’s phenomenology leading to a kind of Pythagoreanism in the final analysis</div>

2020 ◽  
Author(s):  
Vasil Penchev

<div>Husserl’s phenomenology is what is used, and then the conception of “bracketing reality” is modelled to generalize Peano arithmetic in its relation to set theory in the foundation of mathematics. The obtained model is equivalent to the generalization of Peano arithmetic by means of replacing the axiom of induction with that of transfinite induction.</div><div><br></div><div>A comparison to Mach’s doctrine is used to be revealed the fundamental and philosophical reductionism of Husserl’s phenomenology leading to a kind of Pythagoreanism in the final analysis</div>


2020 ◽  
Author(s):  
Vasil Dinev Penchev

A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality.The main statement is formulated as follows: Any scientific theory admits isomorphism to some mathematical structure in a way constructive (that is not as a proof of “pure existence” in a mathematical sense).Its investigation needs philosophical means. Husserl’s phenomenology is what is used, and then the conception of “bracketing reality” is modelled to generalize Peano arithmetic in its relation to set theory in the foundation of mathematics. The obtained model is equivalent to the generalization of Peano arithmetic by means of replacing the axiom of induction with that of transfinite induction.The sketch of the proof is organized in five steps: (1) a generalization of epoché; (2) involving transfinite induction in the transition between Peano arithmetic and set theory; (3) discussing the finiteness of Peano arithmetic; (4) applying transfinite induction to Peano arithmetic; (5) discussing an arithmetical model of reality.Accepting or rejecting the principle, two kinds of mathematics appear differing from each other by its relation to reality. Accepting the principle, mathematics has to include reality within itself in a kind of Pythagoreanism. These two kinds are called in paper correspondingly Hilbert mathematics and Gödel mathematics. The sketch of the proof of the principle demonstrates that the generalization of Peano arithmetic as above can be interpreted as a model of Hilbert mathematics into Gödel mathematics therefore showing that the former is not less consistent than the latter, and the principle is an independent axiom.The present paper follows a pathway grounded on Husserl’s phenomenology and “bracketing reality” to achieve the generalized arithmetic necessary for the principle to be founded in alternative ontology, in which there is no reality external to mathematics: reality is included within mathematics. That latter mathematics is able to self-found itself and can be called Hilbert mathematics in honour of Hilbert’s program for self-founding mathematics on the base of arithmetic.The principle of universal mathematizability is consistent to Hilbert mathematics, but not to Gödel mathematics. Consequently, its validity or rejection would resolve the problem which mathematics refers to our being; and vice versa: the choice between them for different reasons would confirm or refuse the principle as to the being.An information interpretation of Hilbert mathematics is involved. It is a kind of ontology of information. The Schrödinger equation in quantum mechanics is involved to illustrate that ontology. Thus the problem which of the two mathematics is more relevant to our being (rather than reality for reality is external only to Gödel mathematics) is discussed again in a new wayA few directions for future work can be: a rigorous formal proof of the principle as an independent axiom; the further development of information ontology consistent to both kinds of mathematics, but much more natural for Hilbert mathematics; the development of the information interpretation of quantum mechanics as a mathematical one for information ontology and thus Hilbert mathematics; the description of consciousness in terms of information ontology.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

Husserl’s phenomenology is what is used, and then the conception of “bracketing reality” is modelled to generalize Peano arithmetic in its relation to set theory in the foundation of mathematics. The obtained model is equivalent to the generalization of Peano arithmetic by means of replacing the axiom of induction with that of transfinite induction.A comparison to Mach’s doctrine is used to be revealed the fundamental and philosophical reductionism of Husserl’s phenomenology leading to a kind of Pythagoreanism in the final analysis.


2019 ◽  
Vol 25 (1) ◽  
pp. 101-124
Author(s):  
MARIA HÄMEEN-ANTTILA

AbstractIn 1936, Gerhard Gentzen published a proof of consistency for Peano Arithmetic using transfinite induction up to ε0, which was considered a finitistically acceptable procedure by both Gentzen and Paul Bernays. Gentzen’s method of arithmetising ordinals and thus avoiding the Platonistic metaphysics of set theory traces back to the 1920s, when Bernays and David Hilbert used the method for an attempted proof of the Continuum Hypothesis. The idea that recursion on higher types could be used to simulate the limit-building in transfinite recursion seems to originate from Bernays. The main difficulty, which was already discovered in Gabriel Sudan’s nearly forgotten paper of 1927, was that measuring transfinite ordinals requires stronger methods than representing them. This paper presents a historical account of the idea of nominalistic ordinals in the context of the Hilbert Programme as well as Gentzen and Bernays’ finitary interpretation of transfinite induction.


1943 ◽  
Vol 8 (4) ◽  
pp. 89-106 ◽  
Author(s):  
Paul Bernays

We have still to consider the extension of the methods of number theory to infinite ordinals—or to transfinite numbers as they may also, as usual, be called.The means for establishing number theory are, as we know, recursive definition, complete induction, and the “principle of the least number.” The last of these applies to arbitrary ordinals as well as to finite ordinals, since every nonempty class of ordinals has a lowest element. Hence immediately results also the following generalization of complete induction, called transfinite induction: If A is a class of ordinals such that (1) ΟηA, and (2) αηA → α′ηA, and (3) for every limiting number l, (x)(xεl → xηA) → lηA, then every ordinal belongs to A.


1990 ◽  
Vol 55 (1) ◽  
pp. 194-206 ◽  
Author(s):  
Robert S. Lubarsky

The program of reverse mathematics has usually been to find which parts of set theory, often used as a base for other mathematics, are actually necessary for some particular mathematical theory. In recent years, Slaman, Groszek, et al, have given the approach a new twist. The priority arguments of recursion theory do not naturally or necessarily lead to a foundation involving any set theory; rather, Peano Arithmetic (PA) in the language of arithmetic suffices. From this point, the appropriate subsystems to consider are fragments of PA with limited induction. A theorem in this area would then have the form that certain induction axioms are independent of, necessary for, or even equivalent to a theorem about the Turing degrees. (See, for examples, [C], [GS], [M], [MS], and [SW].)As go the integers so go the ordinals. One motivation of α-recursion theory (recursion on admissible ordinals) is to generalize classical recursion theory. Since induction in arithmetic is meant to capture the well-foundedness of ω, the corresponding axiom in set theory is foundation. So reverse mathematics, even in the context of a set theory (admissibility), can be changed by the influence of reverse recursion theory. We ask not which set existence axioms, but which foundation axioms, are necessary for the theorems of α-recursion theory.When working in the theory KP – Foundation Schema (hereinafter called KP−), one should really not call it α-recursion theory, which refers implicitly to the full set of axioms KP. Just as the name β-recursion theory refers to what would be α-recursion theory only it includes also inadmissible ordinals, we call the subject of study here γ-recursion theory. This answers a question by Sacks and S. Friedman, “What is γ-recursion theory?”


1965 ◽  
Vol 30 (3) ◽  
pp. 295-317 ◽  
Author(s):  
Gaisi Takeuti

Although Peano's arithmetic can be developed in set theories, it can also be developed independently. This is also true for the theory of ordinal numbers. The author formalized the theory of ordinal numbers in logical systems GLC (in [2]) and FLC (in [3]). These logical systems which contain the concept of ‘arbitrary predicates’ or ‘arbitrary functions’ are of higher order than the first order predicate calculus with equality. In this paper we shall develop the theory of ordinal numbers in the first order predicate calculus with equality as an extension of Peano's arithmetic. This theory will prove to be easy to manage and fairly powerful in the following sense: If A is a sentence of the theory of ordinal numbers, then A is a theorem of our system if and only if the natural translation of A in set theory is a theorem of Zermelo-Fraenkel set theory. It will be treated as a natural extension of Peano's arithmetic. The latter consists of axiom schemata of primitive recursive functions and mathematical induction, while the theory of ordinal numbers consists of axiom schemata of primitive recursive functions of ordinal numbers (cf. [5]), of transfinite induction, of replacement and of cardinals. The latter three axiom schemata can be considered as extensions of mathematical induction.In the theory of ordinal numbers thus developed, we shall construct a model of Zermelo-Fraenkel's set theory by following Gödel's construction in [1]. Our intention is as follows: We shall define a relation α ∈ β as a primitive recursive predicate, which corresponds to F′ α ε F′ β in [1]; Gödel defined the constructible model Δ using the primitive notion ε in the universe or, in other words, using the whole set theory.


2002 ◽  
Vol 67 (1) ◽  
pp. 260-278 ◽  
Author(s):  
Thomas Strahm

AbstractIn this article we provide wellordering proofs for metapredicative systems of explicit mathematics and admissible set theory featuring suitable axioms about the Mahloness of the underlying universe of discourse. In particular, it is shown that in the corresponding theories EMA of explicit mathematics and KPm0 of admissible set theory, transfinite induction along initial segments of the ordinal φω00, for φ being a ternary Veblen function, is derivable. This reveals that the upper bounds given for these two systems in the paper Jäger and Strahm [11] are indeed sharp.


1982 ◽  
Vol 47 (2) ◽  
pp. 416-422 ◽  
Author(s):  
L. A. S. Kirby

Flipping properties were introduced in set theory by Abramson, Harrington, Kleinberg and Zwicker [1]. Here we consider them in the context of arithmetic and link them with combinatorial properties of initial segments of nonstandard models studied in [3]. As a corollary we obtain independence resutls involving flipping properties.We follow the notation of the author and Paris in [3] and [2], and assume some knowledge of [3]. M will denote a countable nonstandard model of P (Peano arithmetic) and I will be a proper initial segment of M. We denote by N the standard model or the standard part of M. X ↑ I will mean that X is unbounded in I. If X ⊆ M is coded in M and M ≺ K, let X(K) be the subset of K coded in K by the element which codes X in M. So X(K) ⋂ M = X.Recall that M ≺IK (K is an I-extension of M) if M ≺ K and for some c∈K,In [3] regular and strong initial segments are defined, and among other things it is shown that I is regular if and only if there exists an I-extension of M.


Sign in / Sign up

Export Citation Format

Share Document