scholarly journals Numerical Simulations of Terrestrial Heat Flow in the Beiras Region, Mainland Portugal

Author(s):  
Maria Rosa Alves Duque

Numerical simulations of heat flow density have been made for ten localities in the Beiras region of central Portugal where observational data are absent. The procedure adopted is based on results of deep crustal geophysical surveys and consider that the heat flow measured at the surface of the Earth results from the addition of heat generated in the crust by radioactive sources to that coming from the mantle. Radioactive heat sources in the region are heterogeneous and heat flow values at the surface depends on the thickness of upper crustal layers. Geotherms were obtained considering heat flow by conduction in the vertical direction. The models employed make use of data derived from geophysical surveys of Moho depths and detailed results related with seismic velocity distribution in the crust. In addition, results of radiometric surveys were employed in deriving heat production values for upper layers of the crust. A value around 35 mW m-2 was assumed for heat flow from the mantle. The resulting heat flow density values are similar to those found for areas with similar tectonic characteristics in NW Africa and in Southern Portugal.

2021 ◽  
Vol 2 (1) ◽  
pp. 38-43
Author(s):  
Elena A. Glukhova ◽  
Pavel I. Safronov ◽  
Lev M. Burshtein

The article presents the one-dimensional basin modeling performed in four wells to reconstruct the thermal history of deposits and reconstruct the effective values of the heat flow density.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Pauline Harlé ◽  
Alexandra R. L. Kushnir ◽  
Coralie Aichholzer ◽  
Michael J. Heap ◽  
Régis Hehn ◽  
...  

AbstractThe Upper Rhine Graben (URG) has been extensively studied for geothermal exploitation over the past decades. Yet, the thermal conductivity of the sedimentary cover is still poorly constrained, limiting our ability to provide robust heat flow density estimates. To improve our understanding of heat flow density in the URG, we present a new large thermal conductivity database for sedimentary rocks collected at outcrops in the area including measurements on (1) dry rocks at ambient temperature (dry); (2) dry rocks at high temperature (hot) and (3) water-saturated rocks at ambient temperature (wet). These measurements, covering the various lithologies composing the sedimentary sequence, are associated with equilibrium-temperature profiles measured in the Soultz-sous-Forêts wells and in the GRT-1 borehole (Rittershoffen) (all in France). Heat flow density values considering the various experimental thermal conductivity conditions were obtained for different depth intervals in the wells along with average values for the whole boreholes. The results agree with the previous heat flow density estimates based on dry rocks but more importantly highlight that accounting for the effect of temperature and water saturation of the formations is crucial to providing accurate heat flow density estimates in a sedimentary basin. For Soultz-sous-Forêts, we calculate average conductive heat flow density to be 127 mW/m2 when considering hot rocks and 184 mW/m2 for wet rocks. Heat flow density in the GRT-1 well is estimated at 109 and 164 mW/m2 for hot and wet rocks, respectively. Results from the Rittershoffen well suggest that heat flow density is nearly constant with depth, contrary to the observations for the Soultz-sous-Forêts site. Our results show a positive heat flow density anomaly in the Jurassic formations, which could be explained by a combined effect of a higher radiogenic heat production in the Jurassic sediments and thermal disturbance caused by the presence of the major faults close to the Soultz-sous-Forêts geothermal site. Although additional data are required to improve these estimates and our understanding of the thermal processes, we consider the heat flow densities estimated herein as the most reliable currently available for the URG.


Author(s):  
W. G. Powell ◽  
D. S. Chapman ◽  
N. Balling ◽  
A. E. Beck

Geothermics ◽  
1998 ◽  
Vol 27 (4) ◽  
pp. 469-484 ◽  
Author(s):  
Gennaro Corrado ◽  
Salvatore De Lorenzo ◽  
Francesco Mongelli ◽  
Antonio Tramacere ◽  
Gianmaria Zito

1984 ◽  
Vol 103 (1-4) ◽  
pp. 283-296 ◽  
Author(s):  
V. čermák ◽  
M. Krešl ◽  
J. Šafanda ◽  
M. Nápoles-Pruna ◽  
R. Tenreyro-Perez ◽  
...  

2016 ◽  
Vol 46 (1) ◽  
pp. 33-49 ◽  
Author(s):  
Dušan Majcin ◽  
Roman Kutas ◽  
Dušan Bilčík ◽  
Vladimír Bezák ◽  
Ignat Korchagin

Abstract The contribution presents the results acquired both by direct cognitive geothermic methods and by modelling approaches of the lithosphere thermal state in the region of the Transcarpathian depression and surrounding units. The activities were aimed at the determination of the temperature field distribution and heat flow density distribution in the upper parts of the Earth’s crust within the studied area. Primary new terrestrial heat flow density map was constructed from values determined for boreholes, from their interpretations and from newest outcomes of geothermal modelling methods based on steady-state and transient approaches, and also from other recently gained geophysical and geological knowledge. Thereafter we constructed the maps of temperature field distribution for selected depth levels of up to 5000 m below the surface. For the construction we have used measured borehole temperature data, the interpolation and extrapolation methods, and the modelling results of the refraction effects and of the influences of source type anomalies. New maps and other geothermic data served for the determination of depths with rock temperatures suitable for energy utilization namely production of electric energy minimally by the binary cycles. Consequently the thermal conditions were used to identify the most perspective areas for geothermal energy exploitation in the region under study.


Terra Nova ◽  
1993 ◽  
Vol 5 (4) ◽  
pp. 389-398 ◽  
Author(s):  
I.T. Kukkonen ◽  
V. Čermák ◽  
E. Hurtig

Sign in / Sign up

Export Citation Format

Share Document