scholarly journals Operational failure assessment of Remotely Operated Vehicle (ROV) in harsh offshore environments

Pomorstvo ◽  
2021 ◽  
Vol 35 (2) ◽  
pp. 275-286
Author(s):  
Samson Nitonye ◽  
Sidum Adumene ◽  
Charles Ugochukwu Orji ◽  
Anietie Effiong Udo

For an effective integrity assessment of marine robotic in offshore environments, the elements’ failure characteristics need to be understood. A structured probabilistic methodology is proposed for the operational failure assessment (OFA) characteristics of ROV. The first step is to assess the likely failure mode of the ROV system and its support systems. This captures the interaction and failure induced events during operation. The identified potential failure modes are further developed into logical connectivity based on the cause-effect relationship. The logical framework is modeled using the fault tree analysis technique to predict the ROV operational failure probability in an uncertain harsh environment. The fault tree analysis captured the logical relationship between the primary, intermediate, and top events probability. The importance measure criteria were adopted to identify the most probable events, links, and their importance on the failure propagation. The model was demonstrated with an ROV for deep arctic water subsea operations. The result identified the control system, communication linkages, human factor, among others, as most critical in the ROV operational failure. The methodology’s application provides core information on the Mean time between failure (MTBF) of the ROV system that could aid integrity management and provides a guide on early remedial action against total failure.

2018 ◽  
Vol 233 ◽  
pp. 00002 ◽  
Author(s):  
Federica Bonfante ◽  
Matteo D. L. Dalla Vedova ◽  
Paolo Maggiore

This paper is on the Failure Modes and Effects and Criticality Analysis and Fault Tree Analysis methodologies applied to the equipment and functional subsystems of Remotely Piloted Aircraft Systems (RPAS). Such aerial vehicles have been used almost exclusively for military purposes until the first decade of the 2000s. The debate then was focused both on technical and regulatory issues and research activities. Thanks to this renewed interest on unmanned systems and thanks to relatively recent improvements in information science, telecommunication, electronics and material science a strong awareness on the potential extension of unmanned technologies to civil applications arose up. A variety of economic benefits has been recognized by the aviation community from the civil use of RPAS, but, due to the absence of the pilot on board both military and civilian RPAS have always been relegated to fly into segregated airspaces. Technical potentialities of RPAS will be fully exploited integrating them into controlled airspaces in a reliable and safe way. This paper shows an example of application of FMECA and FTA to RPAS and discuss the most critical issues related to the performed analyses as well as possible future developments of this work.


Author(s):  
Mohit Kumar

Recently, a new fuzzy fault tree analysis (FFTA) has been developed to propagate and quantify the epistemic uncertainties occurring in qualitative data such as expert opinions or judgments. It is well known that the weakest triangular norm (Tw) based fuzzy arithmetic operations preserve the shape of the fuzzy numbers, provide more exact fuzzy results and effectively reduce uncertainty range. The objective of this paper is to develop a novel Tw-based fuzzy importance measure to identify the critical basic events in FFTA. The proposed approach has been demonstrated by applying it to a case study to identify the critical components of the Group 1 of the U.S. Combustion Engineering Reactor Protection System (CERPS). The obtained results are then compared to the results computed by the existing well-known importance measures of conventional as well as FFTA. The computed results confirm that the proposed Tw -based importance measure is feasible to identify the critical basic events in FFTA in more exact way.


Author(s):  
Ying-Yi Hong ◽  
Lun-Hui Lee ◽  
Heng-Hsing Cheng

This paper proposed a method for reliability assessment of the protection system for a switchyard by fault-tree analysis considering uncertainty of unavailability for an element. Unavailability of an element with uncertainty is expressed with the fuzzy set. The fault-tree analysis incorporated with the fuzzy set is employed to conduct the reliability assessment. The importance of elements influencing reliability can be achieved by the Fuzzy Importance Measure. Compared with traditional methods, the fault-tree analysis requires less computation. In this paper, a 345 kV switchyard in the 3rd nuclear power plant in Taiwan serves as an example for illustrating the results of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document