glass product
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 9)

H-INDEX

4
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Xiaona Chen ◽  
Shunlin Liang ◽  
Lian He ◽  
Yaping Yang ◽  
Cong Yin

Abstract. Northern Hemisphere (NH) snow cover extent (SCE) is one of the most important indicator of climate change due to its unique surface property. However, short temporal coverage, coarse spatial resolution, and different snow discrimination approach among existing continental scale SCE products hampers its detailed studies. Using the latest Advanced Very High Resolution Radiometer Surface Reflectance (AVHRR-SR) Climate Data Record (CDR) and several ancillary datasets, this study generated a temporally consistent 8-day 0.05° gap-free SCE covering the NH landmass for the period 1981–2019 as part of the Global LAnd Surface Satellite dataset (GLASS) product suite. The development of GLASS SCE contains five steps. First, a decision tree algorithm with multiple threshold tests was applied to distinguish snow cover (NHSCE-D) with other land cover types from daily AVHRR-SR CDR. Second, gridcells with cloud cover and invalid observations were filled by two existing daily SCE products. The gap-filled gridcells were further merged with NHSCE-D to generate combined daily SCE over the NH (NHSCE-Dc). Third, an aggregation process was used to detect the maximum SCE and minimum gaps in each 8-day periods from NHSCE-Dc. Forth, the gaps after aggregation process were further filled by the climatology of snow cover probability to generate the gap-free GLASS SCE. Fifth, the validation process was carried out to evaluate the quality of GLASS SCE. Validation results by using 562 Global Historical Climatology Network stations during 1981–2017 (r = 0.61, p < 0.05) and MOD10C2 during 2001–2019 (r = 0.97, p < 0.01) proved that the GLASS SCE product is credible in snow cover frequency monitoring. Moreover, cross-comparison between GLASS SCE and surface albedo during 1982–2018 further confirmed its values in climate changes studies. The GLASS SCE data are available at https://doi.org/10.5281/zenodo.5775238 (Chen et al. 2021).


2021 ◽  
Author(s):  
Sinan Li ◽  
Li Zhang ◽  
Jingfeng Xiao ◽  
Rui Ma ◽  
Xiangjun Tian ◽  
...  

Abstract. Reliable modeling of carbon and water fluxes is essential for understanding the terrestrial carbon and water cycles and informing policy strategies aimed at constraining carbon emissions and improving water use efficiency. We used an assimilation framework (LPJ-Vegetation and soil moisture Joint Assimilation, or LPJ-VSJA) to improve gross primary production (GPP) and evapotranspiration (ET) estimates globally. The terrestrial biosphere model that we used is the integrated model – LPJ-PM coupled from the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM) and a hydrology module (i.e., the updated Priestley–Taylor Jet Propulsion Laboratory model, PT-JPLSM). Satellite-based soil moisture products derived from the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active and Passive (SMAP) and leaf area index (LAI) from the global Land and Ground satellite (GLASS) product were assimilated into LPJ-PM to improve GPP and ET simulations using a Proper Orthogonal Decomposition-based ensemble four-dimensional variational assimilation method (PODEn4DVar). The joint assimilation framework LPJ-VSJA achieved the best model performance (with an R2 of 0.91 and 0.81 and an RMSD reduced by 50.4 % and 38.4 % for GPP and ET, respectively, compared with those of LPJ-DGVM at the monthly scale). The assimilated GPP and ET demonstrated a better performance in the arid and semiarid regions (GPP: R2 = 0.73, ubRMSD = 1.05 g C m−2 d−1; ET: R2 = 0.73, ubRMSD =  0.61 mm d−1) than in the humid and sub-dry humid regions (GPP: R2 = 0.61, ubRMSD = 1.23 g C m−2 d−1; ET: R2 = 0.66; ubRMSD = 0.67 mm d−1). The ET simulated by LPJ-PM that assimilated SMAP or SMOS had a slight difference, and the ET that assimilated SMAP soil moisture data was more improved than that assimilated SMOS data. Our global simulation modeled by LPJ-VSJA was compared with several global GPP and ET products (e.g., GLASS GPP, GOSIF GPP, GLDAS ET, GLEAM ET) using the triple collocation (TC) method. Our products, especially ET, exhibited advantages in the overall error distribution (estimated error (μ): 3.4 mm month−1; estimated standard deviation of μ: 1.91 mm month−1). Our research showed that the assimilation of multiple datasets could reduce model uncertainties, while the model performance differed across regions and plant functional types. Our assimilation framework (LPJ-VSJA) can improve the model simulation performance of daily GPP and ET globally, especially in water-limited regions.


2021 ◽  
Vol 13 (8) ◽  
pp. 1447
Author(s):  
Shuchao Ye ◽  
Huihui Feng ◽  
Bin Zou ◽  
Ying Ding ◽  
Sijia Zhu ◽  
...  

The surface shortwave radiation budget (Rsn) is one of the main drivers of Earth’s ecosystems and varies with atmospheric and surface conditions. Land use and cover change (LUCC) alters radiation through biogeophysical effects. However, due to the complex interactions between atmospheric and surface factors, it is very challenging to quantify the sole impacts of LUCC. Based on satellite data from the Global Land Surface Satellite (GLASS) Product and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, this study introduces an observation-based approach for detecting LUCC influences on the Rsn by examining a humid basin over the Dongting Lake Basin, China from 2001 to 2015. Our results showed that the Rsn of the study area presented a decreasing trend due to the combined effects of LUCC and climate change. Generally, LUCC contributed −0.45 W/m2 to Rsn at the basin scale, which accounted for 2.53% of the total Rsn change. Furthermore, the LUCC contributions reached −0.69 W/m2, 0.21 W/m2, and −0.41 W/m2 in regions with land transitions of forest→grass, grass→forest, and grass→farmland, which accounted for 5.38%, −4.68%, and 2.40% of the total Rsn change, respectively. Physically, LUCC affected surface radiation by altering the surface properties. Specifically, LUCC induced albedo changes of +0.0039 at the basin scale and +0.0061, −0.0020, and +0.0036 in regions with land transitions of forest→grass, grass→forest, and grass→farmland, respectively. Our findings revealed the impact and process of LUCC on the surface radiation budget, which could support the understanding of the physical mechanisms of LUCC’s impact on ecosystems.


Author(s):  
Shunlin Liang ◽  
Jie Cheng ◽  
Kun Jia ◽  
Bo Jiang ◽  
Qiang Liu ◽  
...  

Capsule:Overview of the 12 Global LAnd Surface Satellite (GLASS) products that encompass surface radiation and vegetation variables with long-term time series (from 1981 or 2000 to the present), high resolutions (500 m, 1 km and 0.05°), and high qualities and accuracies


2020 ◽  
Vol 12 (15) ◽  
pp. 2456
Author(s):  
Yingying An ◽  
Xianhong Meng ◽  
Lin Zhao ◽  
Zhaoguo Li ◽  
Shaoying Wang ◽  
...  

Surface albedo is a crucial parameter in accurately and quantitatively estimating energy and water budget on the Tibetan Plateau (TP) and is also one of the largest radiative uncertainties in land surface modelling attempts. Based on an 8-year ground-based observation of the surface albedo over typical alpine meadows at Maqu and Maduo sites in the eastern TP, the performance of surface albedo products of Global LAnd Surface Satellite (GLASS) and Moderate Resolution Imaging Spectroradiometer (MODIS) in describing albedo variations at daily, 8-day, seasonal timescales, and during different special weather conditions were analyzed. Compared with the ground-based observation in Maqu, the 8-day albedo products from GLASS and MCD43B3 present maximum negative biases of −0.030 and −0.027 at Maqu, respectively. The black-sky albedo (BSA) of GLASS product coincides well with the ground-based observation in Maduo, with root mean square error (RMSE) of 0.092 and correlation coefficient (R) of 0.833, whereas that of MCD43B3 had an RMSE of 0.072 and R of 0.752. However, they are underestimated when the albedo is greater than 0.4. At the seasonal timescale, the BSA of GLASS and MCD43B3 underestimated the ground-based observation of Maqu by 0.015 in summer, while their white-sky albedo (WSA) are slightly overestimated and closer to the ground-based observation. In daily timescale, the response of surface albedo to soil moisture is different in semihumid and semiarid areas in summer. For both sites, the blue-sky-albedo of MCD43A3 has better agreement with the ground-based observation than GLASS and MCD43B3, as it improves the temporal resolution and calculates the albedo by weighting multiple observations within 16 days to be closer to the actual surface. However, even MCD43A3 could not capture the slowdown processes of albedo changes resulted by small snowfall processes or the snow aging due to cloud cover and inversion algorithms.


2020 ◽  
Vol 12 (1) ◽  
pp. 168 ◽  
Author(s):  
Dongdong Wang ◽  
Shunlin Liang ◽  
Yi Zhang ◽  
Xueyuan Gao ◽  
Meredith G. L. Brown ◽  
...  

Surface downward shortwave radiation (DSR) and photosynthetically active radiation (PAR), its visible component, are key parameters needed for many land process models and terrestrial applications. Most existing DSR and PAR products were developed for climate studies and therefore have coarse spatial resolutions, which cannot satisfy the requirements of many applications. This paper introduces a new global high-resolution product of DSR (MCD18A1) and PAR (MCD18A2) over land surfaces using the MODIS data. The current version is Collection 6.0 at the spatial resolution of 5 km and two temporal resolutions (instantaneous and three-hour). A look-up table (LUT) based retrieval approach was chosen as the main operational algorithm so as to generate the products from the MODIS top-of-atmosphere (TOA) reflectance and other ancillary data sets. The new MCD18 products are archived and distributed via NASA’s Land Processes Distributed Active Archive Center (LP DAAC). The products have been validated based on one year of ground radiation measurements at 33 Baseline Surface Radiation Network (BSRN) and 25 AmeriFlux stations. The instantaneous DSR has a bias of −15.4 W/m2 and root mean square error (RMSE) of 101.0 W/m2, while the instantaneous PAR has a bias of −0.6 W/m2 and RMSE of 45.7 W/m2. RMSE of daily DSR is 32.3 W/m2, and that of the daily PAR is 13.1 W/m2. The accuracy of the new MODIS daily DSR data is higher than the GLASS product and lower than the CERES product, while the latter incorporates additional geostationary data with better capturing DSR diurnal variability. MCD18 products are currently under reprocessing and the new version (Collection 6.1) will provide improved spatial resolution (1 km) and accuracy.


2019 ◽  
Vol 11 (21) ◽  
pp. 2524 ◽  
Author(s):  
Duanyang Liu ◽  
Kun Jia ◽  
Xiangqin Wei ◽  
Mu Xia ◽  
Xiwang Zhang ◽  
...  

Fractional vegetation cover (FVC) is an important parameter for many environmental and ecological models. Large-scale and long-term FVC products are critical for various applications. Currently, several global-scale FVC products have been generated with remote sensing data, such as VGT bioGEOphysical product Version 2 (GEOV2), PROBA-V bioGEOphysical product Version 3 (GEOV3) and Global LAnd Surface Satellite (GLASS) FVC products. However, studies comparing and validating these global-scale FVC products are rare. Therefore, in this study, the performances of three global-scale time series FVC products, including the GEOV2, GEOV3, and GLASS FVC products, are investigated to assess their spatial and temporal consistencies. Furthermore, reference FVC data generated from high-spatial-resolution data are used to directly evaluate the accuracy of these FVC products. The results show that these three FVC products achieve general agreements in terms of spatiotemporal consistencies over most regions. In addition, the GLASS and GEOV2 FVC products have reliable spatial and temporal completeness, whereas the GEOV3 FVC product contains much missing data over high-latitude regions, especially during wintertime. Furthermore, the GEOV3 FVC product presents higher FVC values than GEOV2 and GLASS FVC products over the equator. The main differences between the GEOV2 and GLASS FVC products occur over deciduous forests, for which the GLASS product presents slightly higher FVC values than the GEOV2 product during wintertime. Finally, temporal profiles of the GEOV2 and GLASS FVC products show better consistency than the GEOV3 FVC product, and the GLASS FVC product presents more reliable accuracy (R2 = 0.7878, RMSE = 0.1212) compared with the GEOV2 (R2 = 0.5798, RMSE = 0.1921) and GEOV3 (R2 = 0.7744, RMSE = 0.2224) FVC products over these reference FVC data.


2019 ◽  
Vol 16 (4) ◽  
pp. 509-513
Author(s):  
Bo Jiang ◽  
Shunlin Liang ◽  
Aolin Jia ◽  
Jianglei Xu ◽  
Xiaotong Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document