scholarly journals Theories on the Formation and Evolution of Black Holes & Galaxies

2022 ◽  
Author(s):  
James Bushong ◽  
Henry Bushong

Conventional theory suggests that black holes are singularities of enormous mass-density: matter compressed beyond imagination due to extreme mass-based gravitational forces and possessing so much mass-based gravity that light itself cannot escape them. As an alternative to convention, this paper builds on the theories of fire-tornado accretion cylinder vortex forces and colossal magnetic pressure spawned within (previously described by the authors in their paper on ~2D planar celestial kinematics), and analyzes them in more detail specifically for black holes and the formation / evolution of galaxies. Several interesting charge-distribution and associated electromagnetic field components will be utilized in the modeling. To demonstrate concept, the proposed forces during formation and evolution will be computationally modeled and translated into visual simulations in 4-D space-time using C# programming in the Unity operating platform.

2004 ◽  
Vol 13 (07) ◽  
pp. 1375-1379 ◽  
Author(s):  
MANUEL MALHEIRO ◽  
RODRIGO PICANÇO ◽  
SUBHARTHI RAY ◽  
JOSÉ P. S. LEMOS ◽  
VILSON T. ZANCHIN

Effect of maximum amount of charge a compact star can hold, is studied here. We analyze the different features in the renewed stellar structure and discuss the reasons why such huge charge is possible inside a compact star. We studied a particular case of a polytropic equation of state (EOS) assuming the charge density is proportional to the mass density. Although the global balance of force allows a huge charge, the electric repulsion faced by each charged particle forces it to leave the star, resulting in the secondary collapse of the system to form a charged black hole.


Author(s):  
Jae-Kwang Hwang

Space-time evolution is briefly explained by using the 3-dimensional quantized space model (TQSM) based on the 4-dimensional (4-D) Euclidean space. The energy (E=cDtDV), charges (|q|= cDt) and absolute time (ct) are newly defined based on the 4-D Euclidean space. The big bang is understood by the space-time evolution of the 4-D Euclidean space but not by the sudden 4-D Minkowski space-time creation. The big bang process created the matter universe with the positive energy and the partner anti-matter universe with the negative energy from the CPT symmetry. Our universe is the matter universe with the negative charges of electric charge (EC), lepton charge (LC) and color charge (CC). This first universe is made of three dark matter -, lepton -, and quark - primary black holes with the huge negative charges which cause the Coulomb repulsive forces much bigger than the gravitational forces. The huge Coulomb forces induce the inflation of the primary black holes, that decay to the super-massive black holes. The dark matter super-massive black holes surrounded by the normal matters and dark matters make the galaxies and galaxy clusters. The spiral arms of galaxies are closely related to the decay of the 3-D charged normal matter black holes to the 1-D charged normal matter black holes. The elementary leptons and quarks are created by the decay of the normal matter charged black holes, that is caused by the Coulomb forces much stronger than the gravitational forces. The Coulomb forces are very weak with the very small Coulomb constants (k1(EC) = kdd(EC) ) for the dark matters and very strong with the very big Coulomb constants (k2(EC) = knn(EC)) for the normal matters because of the non-communication of the photons between the dark matters and normal matters. The photons are charge dependent and mass independent. But the dark matters and normal matters have the similar and very weak gravitational forces because of the communication of the gravitons between the dark matters and normal matters. The gravitons are charge independent and mass dependent. Note that the three kinds of charges (EC, LC and CC) and one kind of mass (m) exist in our matter universe. The dark matters, leptons and quarks have the charge configurations of (EC), (EC,LC) and (EC,LC,CC), respectively. Partial masses of elementary fermions are calculated, and the proton spin crisis is explained. The charged black holes are not the singularities.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Chang Liu ◽  
Yan-Gang Miao ◽  
Yu-Mei Wu ◽  
Yu-Hao Zhang

We suggest a quantum black hole model that is based on an analogue to hydrogen atoms. A self-regular Schwarzschild-AdS black hole is investigated, where the mass density of the extreme black hole is given by the probability density of the ground state of hydrogen atoms and the mass densities of nonextreme black holes are given by the probability densities of excited states with no angular momenta. Such an analogue is inclined to adopt quantization of black hole horizons. In this way, the total mass of black holes is quantized. Furthermore, the quantum hoop conjecture and the Correspondence Principle are discussed.


2019 ◽  
Vol 878 (2) ◽  
pp. 75 ◽  
Author(s):  
Lisa Randall ◽  
Zhong-Zhi Xianyu

2020 ◽  
Vol 29 (03) ◽  
pp. 2050025 ◽  
Author(s):  
Mykola M. Stetsko

Scalar–tensor theory of gravity with nonlinear electromagnetic field, minimally coupled to gravity is considered and static black hole solutions are obtained. Namely, power-law and Born–Infeld nonlinear Lagrangians for the electromagnetic field are examined. Since the cosmological constant is taken into account, it allowed us to investigate the so-called topological black holes. Black hole thermodynamics is studied, in particular temperature of the black holes is calculated and examined and the first law of thermodynamics is obtained with help of Wald’s approach.


Sign in / Sign up

Export Citation Format

Share Document