spin crisis
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Jae-Kwang Hwang

The relative force strengths of the Coulomb forces, gravitational forces, dark matter forces, weak forces and strong forces are compared for the dark matters, leptons, quarks, and normal matters (p and n baryons) in terms of the 3-D quantized space model. The quark confinement and asymptotic freedom are explained by the CC merging to the A(CC=-5)3 state. The proton with the (EC,LC,CC) charge configuration of p(1,0,-5) is p(1,0) + A(CC=-5)3. The A(CC=-5)3 state has the 99.6% of the proton mass. The three quarks in p(1,0,-5) are asymptotically free in the EC and LC space of p(1,0) and are strongly confined in the CC space of A(CC=-5)3. This means that the lepton beams in the deep inelastic scattering interact with three quarks in p(1,0) by the EC interaction and weak interaction. Then, the observed spin is the partial spin of p(1,0) which is 32.6 % of the total spin (1/2) of the proton. The A(CC=-5)3 state has the 67.4 % of the proton spin. This explains the proton spin crisis. The EC charge distribution of the proton is the same to the EC charge distribution of p(1,0) which indicates that three quarks in p(1,0) are mostly near the proton surface. From the EC charge distribution of neutron, the 2 lepton system (called as the koron) of the koron is, for the first time, reported in the present work.


Author(s):  
Jae-Kwang Hwang

Space-time evolution is briefly explained by using the 3-dimensional quantized space model (TQSM) based on the 4-dimensional (4-D) Euclidean space. The energy (E=cDtDV), charges (|q|= cDt) and absolute time (ct) are newly defined based on the 4-D Euclidean space. The big bang is understood by the space-time evolution of the 4-D Euclidean space but not by the sudden 4-D Minkowski space-time creation. The big bang process created the matter universe with the positive energy and the partner anti-matter universe with the negative energy from the CPT symmetry. Our universe is the matter universe with the negative charges of electric charge (EC), lepton charge (LC) and color charge (CC). This first universe is made of three dark matter -, lepton -, and quark - primary black holes with the huge negative charges which cause the Coulomb repulsive forces much bigger than the gravitational forces. The huge Coulomb forces induce the inflation of the primary black holes, that decay to the super-massive black holes. The dark matter super-massive black holes surrounded by the normal matters and dark matters make the galaxies and galaxy clusters. The spiral arms of galaxies are closely related to the decay of the 3-D charged normal matter black holes to the 1-D charged normal matter black holes. The elementary leptons and quarks are created by the decay of the normal matter charged black holes, that is caused by the Coulomb forces much stronger than the gravitational forces. The Coulomb forces are very weak with the very small Coulomb constants (k1(EC) = kdd(EC) ) for the dark matters and very strong with the very big Coulomb constants (k2(EC) = knn(EC)) for the normal matters because of the non-communication of the photons between the dark matters and normal matters. The photons are charge dependent and mass independent. But the dark matters and normal matters have the similar and very weak gravitational forces because of the communication of the gravitons between the dark matters and normal matters. The gravitons are charge independent and mass dependent. Note that the three kinds of charges (EC, LC and CC) and one kind of mass (m) exist in our matter universe. The dark matters, leptons and quarks have the charge configurations of (EC), (EC,LC) and (EC,LC,CC), respectively. Partial masses of elementary fermions are calculated, and the proton spin crisis is explained. The charged black holes are not the singularities.


Author(s):  
Jae-Kwang Hwang

Space-time evolution is briefly explained by using the 3-dimensional quantized space model (TQSM) based on the 4-dimensional (4-D) Euclidean space. The energy (E=cDtDV), charges (|q|= cDt) and absolute time (ct) are newly defined based on the 4-D Euclidean space. The big bang is understood by the space-time evolution of the 4-D Euclidean space but not by the sudden 4-D Minkowski space-time creation. The big bang process created the matter universe with the positive energy and the partner anti-matter universe with the negative energy from the CPT symmetry. Our universe is the matter universe with the negative charges of electric charge (EC), lepton charge (LC) and color charge (CC). This first universe is made of three dark matter -, lepton -, and quark - primary black holes with the huge negative charges which cause the Coulomb repulsive forces much bigger than the gravitational forces. The huge Coulomb forces induce the inflation of the primary black holes, that decay to the super-massive black holes. The dark matter super-massive black holes surrounded by the normal matters and dark matters make the galaxies and galaxy clusters. The spiral arms of galaxies are closely related to the decay of the 3-D charged normal matter black holes to the 1-D charged normal matter black holes. The elementary leptons and quarks are created by the decay of the normal matter charged black holes, that is caused by the Coulomb forces much stronger than the gravitational forces. The Coulomb forces are very weak with the very small Coulomb constants (k1(EC) = kdd(EC) ) for the dark matters and very strong with the very big Coulomb constants (k2(EC) = knn(EC)) for the normal matters because of the non-communication of the photons between the dark matters and normal matters. The photons are charge dependent and mass independent. But the dark matters and normal matters have the similar and very weak gravitational forces because of the communication of the gravitons between the dark matters and normal matters. The gravitons are charge independent and mass dependent. Note that the three kinds of charges (EC, LC and CC) and one kind of mass (m) exist in our matter universe. The dark matters, leptons and quarks have the charge configurations of (EC), (EC,LC) and (EC,LC,CC), respectively. Partial masses of elementary fermions are calculated, and the proton spin crisis is explained. The charged black holes are not the singularities.


Author(s):  
Jae-Kwang Hwang

The relative force strengths of the Coulomb forces, gravitational forces, dark matter forces, weak forces and strong forces are compared for the dark matters, leptons, quarks, and normal matters (p and n baryons) in terms of the 3-D quantized space model. The quark confinement and asymptotic freedom are explained by the CC merging to the A(CC=-5)3 state. The proton with the (EC,LC,CC) charge configuration of p(1,0,-5) is p(1,0) + A(CC=-5)3. The A(CC=-5)3 state has the 99.6% of the proton mass. The three quarks in p(1,0,-5) are asymptotically free in the EC and LC space of p(1,0) and are strongly confined in the CC space of A(CC=-5)3. This means that the lepton beams in the deep inelastic scattering interact with three quarks in p(1,0) by the EC interaction and weak interaction. Then, the observed spin is the partial spin of p(1,0) which is 32.6 % of the total spin (1/2) of the proton. The A(CC=-5)3 state has the 67.4 % of the proton spin. This explains the proton spin crisis. The EC charge distribution of the proton is the same to the EC charge distribution of p(1,0) which indicates that three quarks in p(1,0) are mostly near the proton surface. From the EC charge distribution of neutron, the 2 lepton system (called as the koron) of the koron is, for the first time, reported in the present work.


2016 ◽  
Vol 40 ◽  
pp. 1660005 ◽  
Author(s):  
Keh-Fei Liu

The status of lattice calculations of the quark spin, the quark orbital angular momentum, the glue angular momentum and glue spin in the nucleon is summarized. The quark spin calculation is recently carried out from the anomalous Ward identity with chiral fermions and is found to be small mainly due to the large negative anomaly term which is believed to be the source of the ‘proton spin crisis’. We also present the first calculation of the glue spin at finite nucleon momenta.


Sign in / Sign up

Export Citation Format

Share Document