scholarly journals IEEE Microwave Photonics Conference 2020 Tu1.2 channelizer OSF

2021 ◽  
Author(s):  
David Moss

We report a 92 channel RF channelizer based on a 48.9 GHz integrated micro-comb that operates via soliton crystals, together with a passive high-Q ring resonator that acts as a periodic filter with an optical 3dB bandwidth of 121.4 MHz. We obtain an instant RF bandwidth of 8.08 GHz and 17.55 GHz achieved through temperature tuning. These results represent a major advance to achieving fully integrated photonic RF spectrum channelizers with reduced low complexity, size, and high performance for digital-compatible signal detection and broadband analog signal processing.

2020 ◽  
Author(s):  
David Moss

We report a 92 channel RF channelizer based on a 48.9 GHz integrated micro-comb that operates via soliton crystals, together with a passive high-Q ring resonator that acts as a periodic filter with an optical 3dB bandwidth of 121.4 MHz. We obtain an instant RF bandwidth of 8.08 GHz and 17.55 GHz achieved through temperature tuning. These results represent a major advance to achieving fully integrated photonic RF spectrum channelizers with reduced low complexity, size, and high performance for digital-compatible signal detection and broadband analog signal processing.


2020 ◽  
Author(s):  
David Moss

We report a 92 channel RF channelizer based on a 48.9 GHz integrated micro-comb that operates via soliton crystals, together with a passive high-Q ring resonator that acts as a periodic filter with an optical 3dB bandwidth of 121.4 MHz. We obtain an instant RF bandwidth of 8.08 GHz and 17.55 GHz achieved through temperature tuning. These results represent a major advance to achieving fully integrated photonic RF spectrum channelizers with reduced low complexity, size, and high performance for digital-compatible signal detection and broadband analog signal processing.


Author(s):  
Mengxi Tan ◽  
Xingyuan Xu ◽  
Jiayang Wu ◽  
Andreas Boes ◽  
Bill Corcoran ◽  
...  

We report a 92 channel RF channelizer based on a 48.9 GHz integrated micro-comb that operates via soliton crystals, together with a passive high-Q ring resonator that acts as a periodic filter with an optical 3dB bandwidth of 121.4 MHz. We obtain an instant RF bandwidth of 8.08 GHz and 17.55 GHz achieved through temperature tuning. These results represent a major advance to achieving fully integrated photonic RF spectrum channelizers with reduced low complexity, size, and high performance for digital-compatible signal detection and broadband analog signal processing.


2020 ◽  
Author(s):  
David Moss ◽  
Roberto Morandotti ◽  
Arnan Mitchell ◽  
xingyuan xu ◽  
mengxi tan ◽  
...  

We report a broadband radio frequency (RF) channelizer with up to 92 channels using a coherent microcomb source. A soliton crystal microcomb, generated by a 49 GHz micro-ring resonator (MRR), is used as a multi-wavelength source. Due to its ultra-low comb spacing, up to 92 wavelengths are available in the C band, yielding a broad operation bandwidth. Another high-Q MRR is employed as a passive optical periodic filter to slice the RF spectrum with a high resolution of 121.4 MHz. We experimentally achieve an instantaneous RF operation bandwidth of 8.08 GHz and verify RF channelization up to 17.55 GHz via thermal tuning. Our approach is a significant step towards the monolithically integrated photonic RF receivers with reduced complexity, size, and unprecedented performance, which is important for wide RF applications ranging from broadband analog signal processing to digital-compatible signal detection.


2021 ◽  
Author(s):  
David Moss

Abstract We demonstrate high-resolution photonic RF filters using an RF bandwidth scaling approach based on integrated Kerr optical micro-combs. By employing both an active nonlinear micro-ring resonator (MRR) as a high-quality micro-comb source and a passive high-Q MRR to slice the shaped comb, a large RF instantaneous bandwidth of 4.64 GHz and a high resolution of 117 MHz are achieved, together with a broad RF operation band covering 3.28 to 19.4 GHz (L to Ku bands) using thermal tuning. We achieve programmable RF transfer functions including binary-coded notch filters and RF equalizing filters with reconfigurable slopes. Our approach is an attractive solution for high performance RF spectral shaping with high performance and flexibility.


2020 ◽  
Author(s):  
David Moss ◽  
Roberto Morandotti ◽  
Arnan Mitchell ◽  
xingyuan xu ◽  
mengxi tan ◽  
...  

We report a broadband radio frequency (RF) channelizer with up to 92 channels using a coherent microcomb source. A soliton crystal microcomb, generated by a 49 GHz micro-ring resonator (MRR), is used as a multi-wavelength source. Due to its ultra-low comb spacing, up to 92 wavelengths are available in the C band, yielding a broad operation bandwidth. Another high-Q MRR is employed as a passive optical periodic filter to slice the RF spectrum with a high resolution of 121.4 MHz. We experimentally achieve an instantaneous RF operation bandwidth of 8.08 GHz and verify RF channelization up to 17.55 GHz via thermal tuning. Our approach is a significant step towards the monolithically integrated photonic RF receivers with reduced complexity, size, and unprecedented performance, which is important for wide RF applications ranging from broadband analog signal processing to digital-compatible signal detection.


2020 ◽  
Author(s):  
David Moss ◽  
Roberto Morandotti ◽  
Arnan Mitchell ◽  
xingyuan xu ◽  
mengxi tan ◽  
...  

We report a broadband radio frequency (RF) channelizer with up to 92 channels using a coherent microcomb source. A soliton crystal microcomb, generated by a 49 GHz micro-ring resonator (MRR), is used as a multi-wavelength source. Due to its ultra-low comb spacing, up to 92 wavelengths are available in the C band, yielding a broad operation bandwidth. Another high-Q MRR is employed as a passive optical periodic filter to slice the RF spectrum with a high resolution of 121.4 MHz. We experimentally achieve an instantaneous RF operation bandwidth of 8.08 GHz and verify RF channelization up to 17.55 GHz via thermal tuning. Our approach is a significant step towards the monolithically integrated photonic RF receivers with reduced complexity, size, and unprecedented performance, which is important for wide RF applications ranging from broadband analog signal processing to digital-compatible signal detection.


2012 ◽  
Vol 17 (4) ◽  
pp. 207-216 ◽  
Author(s):  
Magdalena Szymczyk ◽  
Piotr Szymczyk

Abstract The MATLAB is a technical computing language used in a variety of fields, such as control systems, image and signal processing, visualization, financial process simulations in an easy-to-use environment. MATLAB offers "toolboxes" which are specialized libraries for variety scientific domains, and a simplified interface to high-performance libraries (LAPACK, BLAS, FFTW too). Now MATLAB is enriched by the possibility of parallel computing with the Parallel Computing ToolboxTM and MATLAB Distributed Computing ServerTM. In this article we present some of the key features of MATLAB parallel applications focused on using GPU processors for image processing.


2011 ◽  
Vol 28 (1) ◽  
pp. 1-14 ◽  
Author(s):  
W. van Straten ◽  
M. Bailes

Abstractdspsr is a high-performance, open-source, object-oriented, digital signal processing software library and application suite for use in radio pulsar astronomy. Written primarily in C++, the library implements an extensive range of modular algorithms that can optionally exploit both multiple-core processors and general-purpose graphics processing units. After over a decade of research and development, dspsr is now stable and in widespread use in the community. This paper presents a detailed description of its functionality, justification of major design decisions, analysis of phase-coherent dispersion removal algorithms, and demonstration of performance on some contemporary microprocessor architectures.


Sign in / Sign up

Export Citation Format

Share Document