temperature tuning
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 25)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
А.В. Бабичев ◽  
Е.С. Колодезный ◽  
А.Г. Гладышев ◽  
Д.В. Денисов ◽  
Н.Ю. Харин ◽  
...  

The possibility of realizing single-mode emission in quantum-cascade lasers due to modulation of output optical losses in a Fabry-Perot cavity is demonstrated. For the active region of the 7.5–8.0 μm spectral range, two-phonon resonance design we used thus the 50 stages and waveguide layers based on indium phosphide made it possible to realize single-mode lasing at 7.765 μm and at temperature of 292 K. Side-mode suppression ratio was about 24 dB and remained the same with an increase in the current pumping up to 1.2 of the threshold current values. The coefficient of wavelength shift with temperature (temperature tuning) in the single-mode lasing regime was 0.56 nm / K.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tyler Kashak ◽  
Liam Flannigan ◽  
Chang-qing Xu

AbstractIn this paper, a systematic study of the relationship between nonlinear crystal length and intracavity second-harmonic generation (SHG) using MgO-doped periodically-poled lithium niobate (MgO:PPLN) is presented. The experimental results demonstrate a relationship between the maximum SHG power generated and the full-width at half maximum (FWHM) of the crystal’s temperature tuning curve to the length of the nonlinear optical crystal. It was shown that maximum SHG power increases rapidly with the increase of MgO:PPLN length, reaching a saturation length (~ 2 mm), which is much shorter than that predicted by the single-pass SHG theory. This saturation length of the MgO:PPLN crystal is almost independent on 808 nm pump power for typical powers used in continuous wave intracavity SHG lasers. In addition to this saturation effect, a broadening effect was also observed, the FWHM of the temperature tuning curve was shown to have a larger FWHM than that predicted by the single-pass SHG theory for MgO:PPLN shorter than the saturation length. This work has the benefit of allowing engineers to optimize nonlinear crystal length when developing intracavity SHG based diode-pumped solid state (DPSS) lasers.


AIP Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 075113
Author(s):  
Huan Liu ◽  
Ting Liu ◽  
Le Song ◽  
Qiao-Mu Zhang ◽  
Ya-Xian Fan ◽  
...  

Author(s):  
Xingang Zhao ◽  
James P. O’Connor ◽  
Jonathan D. Schultz ◽  
Youn Jue Bae ◽  
Chenjian Lin ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Navaneetha K. Ravichandran ◽  
David Broido

AbstractSelection rules act to restrict the intrinsic anharmonic interactions between phonons in all crystals. Yet their influence on phonon propagation is hidden in most materials and so, hard to interrogate experimentally. Using ab initio calculations, we show that the otherwise invisible impact of selection rules on three-phonon scattering can be exposed through anomalous signatures in the pressure (P) and temperature (T) dependence of the thermal conductivities, κ, of certain compounds. Boron phosphide reveals such underlying behavior through an exceptionally sharp initial rise in κ with increasing P, which may be the steepest of any material, and also a peak and decrease in κ at high P. These features are in stark contrast to the measured behavior for many solids, and they occur at experimentally accessible conditions. These findings give a deep understanding of phonon lifetimes and heat conduction in solids, and motivate experimental efforts to observe the predicted behavior.


2021 ◽  
Author(s):  
Tyler Kashak ◽  
Liam Flannigan ◽  
Chang-qing Xu

Abstract In this paper, a systematic study of the relationship between nonlinear crystal length and intracavity second-harmonic generation (SHG) using MgO-doped periodically-poled lithium niobate (MgO:PPLN) is presented. The experimental results demonstrate a relationship between the maximum SHG power generated and the full-width at half maximum (FWHM) of the crystal’s temperature tuning curve to the length of the nonlinear optical crystal. It was shown that maximum SHG power increases rapidly with the increase of MgO:PPLN length, reaching a saturation length (~2 mm), which is much shorter than that predicted by the single-pass SHG theory. This saturation length of the MgO:PPLN crystal is almost independent on 808 nm pump power for typical powers used in continuous wave intracavity SHG lasers. In addition to this saturation effect, a broadening effect was also observed, the FWHM of the temperature tuning curve was shown to have a larger FWHM than that predicted by the single-pass SHG theory for MgO:PPLN shorter than the saturation length. This work has the benefit of allowing engineers to optimize nonlinear crystal length when developing intracavity SHG based diode-pumped solid state (DPSS) lasers.


2021 ◽  
Vol 11 (6) ◽  
pp. 2618
Author(s):  
Hongyan Yu ◽  
Jiaoqing Pan ◽  
Xuliang Zhou ◽  
Hui Wang ◽  
Liang Xie ◽  
...  

We demonstrate a widely tunable distributed Bragg reflector (DBR) laser operating at 1.8-µm, in which the DBR section was butt-jointed InGaAsP (λ = 1.45 μm) material. Through current and temperature tuning, a widely tuning range of over 11 nm with a side mode suppression ratio (SMSR) higher than 30 dB is obtained. Utilizing this DBR laser, the water and methane detection experiment has been successfully implemented, which illustrates the potential capacity of such DBR laser as the light source used for multispecies gas sensing. The work also illustrates that the butt-joint active-passive integration technology developed for the InGaAsP quantum-wells (QWs) can be successfully applied in the InGaAs QWs.


2021 ◽  
Author(s):  
David Moss

We report a 92 channel RF channelizer based on a 48.9 GHz integrated micro-comb that operates via soliton crystals, together with a passive high-Q ring resonator that acts as a periodic filter with an optical 3dB bandwidth of 121.4 MHz. We obtain an instant RF bandwidth of 8.08 GHz and 17.55 GHz achieved through temperature tuning. These results represent a major advance to achieving fully integrated photonic RF spectrum channelizers with reduced low complexity, size, and high performance for digital-compatible signal detection and broadband analog signal processing.


2021 ◽  
Vol 19 (2) ◽  
pp. 021901
Author(s):  
Hui Kong ◽  
Jintian Bian ◽  
Jiyong Yao ◽  
Qing Ye ◽  
Xiaoquan Sun

Sign in / Sign up

Export Citation Format

Share Document