scholarly journals Lampiran 1a Pengecekan Turnitin

2021 ◽  
Author(s):  
Philiphi de Rozari

Pengecekan Turnitin Paper dengan judulSediment Characteristics and Wind Induced Sediment Dynamics in Lake Markemeer, the Netherlands, Aquatic Sciences

2020 ◽  
Author(s):  
Wietse van de Lageweg ◽  
Joao Salvador de Paiva ◽  
Jebbe van der Werf ◽  
Lodewijk de Vet ◽  
Perry de Louw ◽  
...  

<p>Innovative, sustainable and cost-effective coastal protection solutions are required to adapt to environmental change and enhance ecosystem functioning. Managed realignment is an example of an ecosystem engineering coastal management approach motivated by concerns about biological conservation and sea-level rise. It involves relocating the line of defense landward, thereby mimicking what would normally happen with marine environments during a period of sea-level rise. The retreat allows new salt marshes to develop offering a range of ecosystem services. Despite the ongoing execution of managed realignment projects in, amongst others, the UK, Germany, the Netherlands, Belgium and Spain, it remains unclear whether management realignment is able to deliver on the expected socio-economic and environmental benefits.</p><p>Here we report on the short-term (0-4 years) development of physical and ecological processes of the Perkpolder managed realignment area in the Scheldt estuary, the Netherlands, following tidal restoration in 2015. The overarching goal of the Perkpolder project was to realize 75 hectares of low-dynamic tidal nature contributing to Natura2000 conservation goals for the Western Scheldt estuary as well as serving as a compensation measure for the extension of the navigation channel for the Antwerp harbor.</p><p>The Perkpolder managed realignment is considered a unique opportunity to monitor and study the biotic and abiotic changes in an area transforming from a freshwater agricultural area to a tidal saline natural area. An interdisciplinary monitoring framework was set up to record the abiotic and biotic developments of the Perkpolder realignment area, particularly focusing on morphological changes, colonization of the new tidal area by benthic macrofauna and vegetation, and its function as foraging area for water birds. Also the groundwater system is studied and its effect on the surrounding agricultural land.</p><p>A mitigation measure, called ‘SeepCat’, was installed on the border of the new tidal area and the agricultural land to protect the freshwater lens used by farmers for irrigation. The lens was expected to shrink by this local sea level rise. From the groundwater measurements, it was concluded that the SeepCat system was functioning well enough to compensate for the effects of the new tidal area.</p><p>Using a Delft3D numerical model simulation, it was shown that the design of the morphological template has a large impact on the rates of morphological change. Additionally, the sediment import, estimated from SPM concentration and discharge measurements, varied strongly in time, and sediment was also being exported for a number of tides. Controlled laboratory experiments show that seedlings of pioneer marsh plant species survive best in a well-drained soil without sediment dynamics. Yet, seedlings can tolerate some moderate sediment dynamics. From a benthic community perspective, the development of the managed realignment Perkpolder is encouraging. A biologically active intertidal area has formed within a short time frame. Within 3 years, the benthic macroinfaunal community shows a development towards a community found on natural tidal mudflats and is expected to reach a stable community in years rather than decades. The area is also frequently visited by birds, which forage during low tide and rest on the surrounding dikes during high tide.</p>


2021 ◽  
Author(s):  
Philiphi de Rozari

In 2007/08, a study was undertaken on sediment dynamics in shallow Lake Markermeer, The Netherlands. Firstly, the sediment characteristics median grain size, mud content and loss on ignition showed a spatial as well as water depth related pattern indicating wind-induced sediment transport. Sediment dynamics were investigated in a sediment trap field survey at two stations. Sediment yields, virtually all coming from sediment resuspension, were significantly correlated with wind speeds. Resuspension rates for Lake Markermeer were very high, viz. ca. 1,000 g/m2 day as an annual average, leading to high suspended solids (SS) contents, due to the large lake area and its shallowness (high ‘Dynamic Ratio’). Sediment resuspension behaviour was further investigated in preliminary laboratory experiments using a ‘micro-flume’, applying increasing water currents onto five Lake Markermeer sediments. Resuspension showed a clear exponential behaviour. Finally, a 3-D model was set up for water quality and SS contents in Lake Markermeer; first results showed a good agreement between modelled and actual SS contents. Construction of artificial islands and dams will reduce wind fetches and may be expected to cause a substantial decrease in lake water turbidity.


2012 ◽  
Vol 66 (9) ◽  
pp. 1984-1990
Author(s):  
P. Kelderman ◽  
P. De Rozari ◽  
S. Mukhopadhyay ◽  
R. O. Ang'weya

In 2007/08, a study was undertaken on sediment dynamics in shallow Lake Markermeer, The Netherlands. Firstly, the sediment characteristics median grain size, mud content and loss on ignition showed a spatial as well as water depth related pattern indicating wind-induced sediment transport. Sediment dynamics were investigated in a sediment trap field survey at two stations. Sediment yields, virtually all coming from sediment resuspension, were significantly correlated with wind speeds. Resuspension rates for Lake Markermeer were very high, viz. ca. 1,000 g/m2day as an annual average, leading to high suspended solids (SS) contents, due to the large lake area and its shallowness (high ‘Dynamic Ratio’). Sediment resuspension behaviour was further investigated in preliminary laboratory experiments using a ‘micro-flume’, applying increasing water currents onto five Lake Markermeer sediments. Resuspension showed a clear exponential behaviour. Finally, a 3-D model was set up for water quality and SS contents in Lake Markermeer; first results showed a good agreement between modelled and actual SS contents. Construction of artificial islands and dams will reduce wind fetches and may be expected to cause a substantial decrease in lake water turbidity.


2021 ◽  
Author(s):  
Philiphi de Rozari

In 2007/08, a study was undertaken on thesediment dynamics in shallow Lake Markermeer (theNetherlands). Firstly, sediment characteristics were determined at 49 sites in the lake. Parameters such as median grain size and loss on ignition showed a spatial as well as water depth related pattern, indicating wind-induced sediment transport. Highly significant correlations were found between all sediment parameters. Lake Markermeer sediment dynamics were investigated in a sediment trap field survey at two permanent stations in the lake. Sedimentyields, virtually all coming from sediment resuspension, were significantly correlated with average wind speeds,though periods of extreme winds also played a role.Sediment resuspension rates for Lake Markermeer were high, viz. on average ca. 1,000 g m-2 day-1. The highlydynamic nature of Lake Markermeer sediments must bedue to the overall shallowness of the lake, together with itslarge surface area (dynamic ratio = [H(area)]/[averagedepth] = 7.5); wind-induced waves and currents willimpact most of the lake’s sediment bed. Indeed, near-bed currents can easily reach values 10 cm/s. Measurements of the thickness of the settled ‘‘mud’’ layer, as well as 137Csdating, showed that long-term deposition only takes placein the deeper SE area of the lake. Finally, lake sediment dynamics were investigated in preliminary laboratory experiments in a small ‘‘micro-flume’’, applying increasingwater currents onto five Lake Markermeer sediments.Sediment resuspension started off at 0.5–0.7 cm/s andshowed a strongly exponential behaviour with respect to these currents.


2011 ◽  
Vol 74 (2) ◽  
pp. 301-313 ◽  
Author(s):  
P. Kelderman ◽  
R. O. Ang’weya ◽  
P. De Rozari ◽  
T. Vijverberg

Sign in / Sign up

Export Citation Format

Share Document