scholarly journals An identity involving Bernoulli numbers and the Stirling numbers of the second kind

2019 ◽  
Author(s):  
Sumit Kumar Jha

Let $B_{r}$ denote the Bernoulli numbers, and $S(r,k)$ denote the Stirling numbers of the second kind. We prove the following identity$$ B_{2r} = (-1)^{r}\sum_{k=1}^{2r}\frac{(-1)^{k-1}\cdot (k-1)!}{k+1}\sum_{l=1}^{k}\frac{S(r,l)\, S(r,k-l)}{\binom{k}{l}}. $$To the best of our knowledge, the identity is new.

Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4833-4844 ◽  
Author(s):  
Eda Yuluklu ◽  
Yilmaz Simsek ◽  
Takao Komatsu

The aim of this paper is to give some new identities and relations related to the some families of special numbers such as the Bernoulli numbers, the Euler numbers, the Stirling numbers of the first and second kinds, the central factorial numbers and also the numbers y1(n,k,?) and y2(n,k,?) which are given Simsek [31]. Our method is related to the functional equations of the generating functions and the fermionic and bosonic p-adic Volkenborn integral on Zp. Finally, we give remarks and comments on our results.


2021 ◽  
Vol 9 (1) ◽  
pp. 22-30
Author(s):  
Sibel Koparal ◽  
Neşe Ömür ◽  
Ömer Duran

Abstract In this paper, by means of the summation property to the Riordan array, we derive some identities involving generalized harmonic, hyperharmonic and special numbers. For example, for n ≥ 0, ∑ k = 0 n B k k ! H ( n . k , α ) = α H ( n + 1 , 1 , α ) - H ( n , 1 , α ) , \sum\limits_{k = 0}^n {{{{B_k}} \over {k!}}H\left( {n.k,\alpha } \right) = \alpha H\left( {n + 1,1,\alpha } \right) - H\left( {n,1,\alpha } \right)} , and for n > r ≥ 0, ∑ k = r n - 1 ( - 1 ) k s ( k , r ) r ! α k k ! H n - k ( α ) = ( - 1 ) r H ( n , r , α ) , \sum\limits_{k = r}^{n - 1} {{{\left( { - 1} \right)}^k}{{s\left( {k,r} \right)r!} \over {{\alpha ^k}k!}}{H_{n - k}}\left( \alpha \right) = {{\left( { - 1} \right)}^r}H\left( {n,r,\alpha } \right)} , where Bernoulli numbers Bn and Stirling numbers of the first kind s (n, r).


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Sunil Kumar Sharma ◽  
Waseem A. Khan ◽  
Serkan Araci ◽  
Sameh S. Ahmed

Abstract Recently, Kim and Kim (Russ. J. Math. Phys. 27(2):227–235, 2020) have studied new type degenerate Bernoulli numbers and polynomials by making use of degenerate logarithm. Motivated by (Kim and Kim in Russ. J. Math. Phys. 27(2):227–235, 2020), we consider a special class of polynomials, which we call a new type of degenerate Daehee numbers and polynomials of the second kind. By using their generating function, we derive some new relations including the degenerate Stirling numbers of the first and second kinds. Moreover, we introduce a new type of higher-order degenerate Daehee polynomials of the second kind. We also derive some new identities and properties of this type of polynomials.


Filomat ◽  
2020 ◽  
Vol 34 (2) ◽  
pp. 543-549
Author(s):  
Buket Simsek

The aim of this present paper is to establish and study generating function associated with a characteristic function for the Bernstein polynomials. By this function, we derive many identities, relations and formulas relevant to moments of discrete random variable for the Bernstein polynomials (binomial distribution), Bernoulli numbers of negative order, Euler numbers of negative order and the Stirling numbers.


Filomat ◽  
2020 ◽  
Vol 34 (2) ◽  
pp. 469-474
Author(s):  
Burak Kurt

In recent years, many mathematicians ([2], [7], [8], [9], [15], [16], [21]) introduced and investigated for the Korobov polynomials. They gave some identities and relations for the Korobov type polynomials. In this work, we give some relations for the first kind Korobov polynomials and Korobov type Changhee polynomials. Further, wegive two relations between the poly-Changhee polynomials and the poly-Korobov polynomials. Also, we give a relation among the poly-Korobov type Changhee polynomials, the Stirling numbers of the second kind, the Euler polynomials and the Bernoulli numbers.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 243
Author(s):  
Dmitry Kruchinin ◽  
Vladimir Kruchinin ◽  
Yilmaz Simsek

The aim of this paper is to study the Tepper identity, which is very important in number theory and combinatorial analysis. Using generating functions and compositions of generating functions, we derive many identities and relations associated with the Bernoulli numbers and polynomials, the Euler numbers and polynomials, and the Stirling numbers. Moreover, we give applications related to the Tepper identity and these numbers and polynomials.


Axioms ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 112 ◽  
Author(s):  
Irem Kucukoglu ◽  
Burcin Simsek ◽  
Yilmaz Simsek

The aim of this paper is to construct generating functions for new families of combinatorial numbers and polynomials. By using these generating functions with their functional and differential equations, we not only investigate properties of these new families, but also derive many new identities, relations, derivative formulas, and combinatorial sums with the inclusion of binomials coefficients, falling factorial, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials), the Poisson–Charlier polynomials, combinatorial numbers and polynomials, the Bersntein basis functions, and the probability distribution functions. Furthermore, by applying the p-adic integrals and Riemann integral, we obtain some combinatorial sums including the binomial coefficients, falling factorial, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials), and the Cauchy numbers (or the Bernoulli numbers of the second kind). Finally, we give some remarks and observations on our results related to some probability distributions such as the binomial distribution and the Poisson distribution.


2019 ◽  
Vol 106 (120) ◽  
pp. 113-123
Author(s):  
Neslihan Kilar ◽  
Yilmaz Simsek

The Fubini type polynomials have many application not only especially in combinatorial analysis, but also other branches of mathematics, in engineering and related areas. Therefore, by using the p-adic integrals method and functional equation of the generating functions for Fubini type polynomials and numbers, we derive various different new identities, relations and formulas including well-known numbers and polynomials such as the Bernoulli numbers and polynomials, the Euler numbers and polynomials, the Stirling numbers of the second kind, the ?-array polynomials and the Lah numbers.


Author(s):  
Feng Qi ◽  
Da-Wei Niu ◽  
Bai-Ni Guo

In the paper, by virtue of the Faà di Bruno formula, some properties of the Bell polynomials of the second kind, and an inversion formula for the Stirling numbers of the first and second kinds, the authors establish meaningfully and significantly two identities which simplify coefficients in a family of ordinary differential equations associated with higher order Bernoulli numbers of the second kind.


Sign in / Sign up

Export Citation Format

Share Document