On the Security Of A Certificateless Signcryption With Known Session-Specific Temporary Information Security In The Standard Model

2020 ◽  
Vol 63 (8) ◽  
pp. 1259-1262
Author(s):  
Xi-Jun Lin ◽  
Lin Sun ◽  
Zhen Yan ◽  
Xiaoshuai Zhang ◽  
Haipeng Qu

Abstract Rastegari et al. recently proposed a certificateless signcryption (CL-SC) scheme. They claimed that their scheme is the first secure CL-SC scheme, which captures the known session-specific temporary information security (KSSTIS), in the standard model. In this paper, we point out that their scheme is insecure, which implies that how to construct a secure CL-SC scheme with KSSTIS in the standard model is still an open problem.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yi-Fan Tseng ◽  
Chun-I Fan

Multireceiver identity-based encryption is a cryptographic primitive, which allows a sender to encrypt a message for multiple receivers efficiently and securely. In some applications, the receivers may not want their identities to be revealed. Motivated by this issue, in 2010, Fan et al. first proposed the concept of anonymous multireceiver identity-based encryption (AMRIBE). Since then, lots of literature studies in this field have been proposed. After surveying the existing works, however, we found that most of them fail to achieve provable anonymity with tight reduction. A security proof with tight reduction means better quality of security and better efficiency of implementation. In this paper, we focus on solving the open problem in this field that is to achieve the ANON-IND-CCA security with tight reduction by giving an AMRIBE scheme. The proposed scheme is proven to be IND-MID-CCA and ANON-MID-CCA secure with tight reduction under a variant of the DBDH assumption. To the best of our knowledge, this is the first scheme proven with tight reducible full CCA security in the standard model.


2020 ◽  
Author(s):  
Stephane Maes

Proving and constructing viable Yang Mills Gauge is a key concern for the Standard Model and an open problem. It has only be solved on lattices. Yet, gravity is not modeled in the Standard Model. We discuss that in a multi-fold universe where gravity emerges from entanglement effects, the spacetime is discrete (fractal with fractional dimensions, noncommutative and still Lorentz invariant). For any Lorentz invariant discrete spacetime, the lattice proofs and their lattice cell size independence completes the proof of the mass gap for Yang Mills Gauge theories. Continuous spacetime may or may not have a mass gap; but it does not matter if the real universe is discrete and Lorentz invariant.


Author(s):  
Sterling P. Newberry

At the 1958 meeting of our society, then known as EMSA, the author introduced the concept of microspace and suggested its use to provide adequate information storage space and the use of electron microscope techniques to provide storage and retrieval access. At this current meeting of MSA, he wishes to suggest an additional use of the power of the electron microscope.The author has been contemplating this new use for some time and would have suggested it in the EMSA fiftieth year commemorative volume, but for page limitations. There is compelling reason to put forth this suggestion today because problems have arisen in the “Standard Model” of particle physics and funds are being greatly reduced just as we need higher energy machines to resolve these problems. Therefore, any techniques which complement or augment what we can accomplish during this austerity period with the machines at hand is worth exploring.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2014 ◽  
Vol 36 (10) ◽  
pp. 2156-2167
Author(s):  
Qiang LI ◽  
Deng-Guo FENG ◽  
Li-Wu ZHANG ◽  
Zhi-Gang GAO

Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

The motivation for supersymmetry. The algebra, the superspace, and the representations. Field theory models and the non-renormalisation theorems. Spontaneous and explicit breaking of super-symmetry. The generalisation of the Montonen–Olive duality conjecture in supersymmetric theories. The remarkable properties of extended supersymmetric theories. A brief discussion of twisted supersymmetry in connection with topological field theories. Attempts to build a supersymmetric extention of the standard model and its experimental consequences. The property of gauge supersymmetry to include general relativity and the supergravity models.


Sign in / Sign up

Export Citation Format

Share Document