scholarly journals Finite field-dependent BRST–anti-BRST transformations: Jacobians and application to the Standard Model

2016 ◽  
Vol 31 (20n21) ◽  
pp. 1650111 ◽  
Author(s):  
Pavel Yu. Moshin ◽  
Alexander A. Reshetnyak

We continue our research[Formula: see text] and extend the class of finite BRST–anti-BRST transformations with odd-valued parameters [Formula: see text], [Formula: see text], introduced in these works. In doing so, we evaluate the Jacobians induced by finite BRST–anti-BRST transformations linear in functionally-dependent parameters, as well as those induced by finite BRST–anti-BRST transformations with arbitrary functional parameters. The calculations cover the cases of gauge theories with a closed algebra, dynamical systems with first-class constraints, and general gauge theories. The resulting Jacobians in the case of linearized transformations are different from those in the case of polynomial dependence on the parameters. Finite BRST–anti-BRST transformations with arbitrary parameters induce an extra contribution to the quantum action, which cannot be absorbed into a change of the gauge. These transformations include an extended case of functionally-dependent parameters that implies a modified compensation equation, which admits nontrivial solutions leading to a Jacobian equal to unity. Finite BRST–anti-BRST transformations with functionally-dependent parameters are applied to the Standard Model, and an explicit form of functionally-dependent parameters [Formula: see text] is obtained, providing the equivalence of path integrals in any 3-parameter [Formula: see text]-like gauges. The Gribov–Zwanziger theory is extended to the case of the Standard Model, and a form of the Gribov horizon functional is suggested in the Landau gauge, as well as in [Formula: see text]-like gauges, in a gauge-independent way using field-dependent BRST–anti-BRST transformations, and in [Formula: see text]-like gauges using transverse-like non-Abelian gauge fields.

2007 ◽  
Vol 22 (31) ◽  
pp. 5808-5818 ◽  
Author(s):  
Pascal Anastasopoulos

D -brane realizations of the Standard Model predict extra abelian gauge fields which are superficially anomalous. The anomalies are cancelled via appropriate couplings to axions and Chern-Simons-like couplings. The presence of such couplings has dramatic experimental consequences: a) they provide masses to the anomalous abelian gauge fields (which masses can be of order of a few TeV), b) they provide new contributions to couplings like Z '-¿ gamma Z , that may be considerable at LHC. This proceeding is mainely based on hep-th/0605225.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Raghuveer Garani ◽  
Michele Redi ◽  
Andrea Tesi

Abstract We investigate the nightmare scenario of dark sectors that are made of non-abelian gauge theories with fermions, gravitationally coupled to the Standard Model (SM). While testing these scenarios is experimentally challenging, they are strongly motivated by the accidental stability of dark baryons and pions, that explain the cosmological stability of dark matter (DM). We study the production of these sectors which are minimally populated through gravitational freeze-in, leading to a dark sector temperature much lower than the SM, or through inflaton decay, or renormalizable interactions producing warmer DM. Despite having only gravitational couplings with the SM these scenarios turn out to be rather predictive depending roughly on three parameters: the dark sector temperature, the confinement scale and the dark pion mass. In particular, when the initial temperature is comparable to the SM one these scenarios are very constrained by structure formation, ∆Neff and limits on DM self-interactions. Dark sectors with same temperature or warmer than SM are typically excluded.


1994 ◽  
Vol 09 (33) ◽  
pp. 3053-3062 ◽  
Author(s):  
B. MACHET

We show how an Abelian spontaneously broken gauge theory of fermions endowed with a composite scalar multiplet becomes naturally anomaly-free, and yet correctly describes the couplings of a neutral isoscalar pion to two gauge fields and to leptons: the first coupling is the same as that computed from the chiral anomaly, and the second is identical with that obtained from the 'Partially Conserved Axial Current' hypothesis. The general (non-Abelian) case of the standard model is only mentioned and will be the subject of another work.


2018 ◽  
Vol 175 ◽  
pp. 08002 ◽  
Author(s):  
Pascal Törek ◽  
Axel Maas ◽  
René Sondenheimer

In gauge theories, the physical, experimentally observable spectrum consists only of gauge-invariant states. In the standard model the Fröhlich-Morchio-Strocchi mechanism shows that these states can be adequately mapped to the gauge-dependent elementary W, Z, Higgs, and fermions. In theories with a more general gauge group and Higgs sector, appearing in various extensions of the standard model, this has not to be the case. In this work we determine analytically the physical spectrum of SU(N > 2) gauge theories with a Higgs field in the fundamental representation. We show that discrepancies between the spectrum predicted by perturbation theory and the observable physical spectrum arise. We confirm these analytic findings with lattice simulations for N = 3.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Upalaparna Banerjee ◽  
Joydeep Chakrabortty ◽  
Suraj Prakash ◽  
Shakeel Ur Rahaman ◽  
Michael Spannowsky

Abstract It is not only conceivable but likely that the spectrum of physics beyond the Standard Model (SM) is non-degenerate. The lightest non-SM particle may reside close enough to the electroweak scale that it can be kinematically probed at high-energy experiments and on account of this, it must be included as an infrared (IR) degree of freedom (DOF) along with the SM ones. The rest of the non-SM particles are heavy enough to be directly experimentally inaccessible and can be integrated out. Now, to capture the effects of the complete theory, one must take into account the higher dimensional operators constituted of the SM DOFs and the minimal extension. This construction, BSMEFT, is in the same spirit as SMEFT but now with extra IR DOFs. Constructing a BSMEFT is in general the first step after establishing experimental evidence for a new particle. We have investigated three different scenarios where the SM is extended by additional (i) uncolored, (ii) colored particles, and (iii) abelian gauge symmetries. For each such scenario, we have included the most-anticipated and phenomenologically motivated models to demonstrate the concept of BSMEFT. In this paper, we have provided the full EFT Lagrangian for each such model up to mass dimension 6. We have also identified the CP, baryon (B), and lepton (L) number violating effective operators.


2016 ◽  
Vol 31 (16) ◽  
pp. 1630015 ◽  
Author(s):  
Robert Delbourgo

Local events are characterized by “where”, “when” and “what”. Just as (bosonic) spacetime forms the backdrop for location and time, (fermionic) property space can serve as the backdrop for the attributes of a system. With such a scenario I shall describe a scheme that is capable of unifying gravitation and the other forces of nature. The generalized metric contains the curvature of spacetime and property separately, with the gauge fields linking the bosonic and fermionic arenas. The super-Ricci scalar can then automatically yield the spacetime Lagrangian of gravitation and the Standard Model (plus a cosmological constant) upon integration over property coordinates.


2002 ◽  
Vol 16 (14n15) ◽  
pp. 1943-1950 ◽  
Author(s):  
T. FUJIWARA

The spectral flows of the hermitian Wilson-Dirac operator for a continuous family of abelian gauge fields connecting different topological sectors are shown to have a characteristic structure leading to the lattice index theorem. The index of the overlap Dirac operator is shown to coincide with the topological charge for a wide class of gauge field configurations. It is also argued that in two dimensions the eigenvalue spectra for some special but nontrivial background gauge fields can be described by a set of universal polynomials and the index can be found exactly.


2012 ◽  
Vol 27 (26) ◽  
pp. 1230025 ◽  
Author(s):  
JORGE C. ROMÃO ◽  
JOÃO P. SILVA

When performing a full calculation within the standard model (SM) or its extensions, it is crucial that one utilizes a consistent set of signs for the gauge couplings and gauge fields. Unfortunately, the literature is plagued with differing signs and notations. We present all SM Feynman rules, including ghosts, in a convention-independent notation, and we table the conventions in close to 40 books and reviews.


Sign in / Sign up

Export Citation Format

Share Document