scholarly journals Classical Mathematical Integrated Information Theory

2021 ◽  
Author(s):  
Siddharth Sharma

This paper is an attempt to give mathematical structure to classical integrated information theory by Masafumi Oizumi, Larissa Albantakis, Giulio Tononi, using the definition provided by Giulio Tononi and making few assumptions like the mechanisms are open subset of set of elements and system is the topology of the set of elements. This would make IIT accessible to a wide audience, with more formal basis who can then apply it to non-biological objects too.

Author(s):  
Johannes Kleiner ◽  
Sean Tull

Integrated Information Theory is one of the leading models of consciousness. It aims to describe both the quality and quantity of the conscious experience of a physical system, such as the brain, in a particular state. In this contribution, we propound the mathematical structure of the theory, separating the essentials from auxiliary formal tools. We provide a definition of a generalized IIT which has IIT 3.0 of Tononi et al., as well as the Quantum IIT introduced by Zanardi et al. as special cases. This provides an axiomatic definition of the theory which may serve as the starting point for future formal investigations and as an introduction suitable for researchers with a formal background.


PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Anthony Trewavas

AbstractLacking an anatomical brain/nervous system, it is assumed plants are not conscious. The biological function of consciousness is an input to behaviour; it is adaptive (subject to selection) and based on information. Complex language makes human consciousness unique. Consciousness is equated to awareness. All organisms are aware of their surroundings, modifying their behaviour to improve survival. Awareness requires assessment too. The mechanisms of animal assessment are neural while molecular and electrical in plants. Awareness of plants being also consciousness may resolve controversy. The integrated information theory (IIT), a leading theory of consciousness, is also blind to brains, nerves and synapses. The integrated information theory indicates plant awareness involves information of two kinds: (1) communicative, extrinsic information as a result of the perception of environmental changes and (2) integrated intrinsic information located in the shoot and root meristems and possibly cambium. The combination of information constructs an information nexus in the meristems leading to assessment and behaviour. The interpretation of integrated information in meristems probably involves the complex networks built around [Ca2+]i that also enable plant learning, memory and intelligent activities. A mature plant contains a large number of conjoined, conscious or aware, meristems possibly unique in the living kingdom.


Author(s):  
Susan Schneider

How can we determine if AI is conscious? The chapter begins by illustrating that there are potentially very serious real-world costs to getting facts about AI consciousness wrong. It then proposes a provisional framework for investigating artificial consciousness that involves several tests or markers. One test is the AI Consciousness Test, which challenges an AI with a series of increasingly demanding natural-language interactions. Another test is based on the Integrated Information Theory, developed by Giulio Tononi and others, and considers whether a machine has a high level of “integrated information.” A third test is a Chip Test, where speculatively an individual’s brain is gradually replaced with durable microchips. If this individual being tested continues to report having phenomenal consciousness, the chapter argues that this could be a reason to believe that some machines could have consciousness.


Sign in / Sign up

Export Citation Format

Share Document