scholarly journals Rigorous Benchmarking of HLA Callers for RNA Sequencing Data

2021 ◽  
Author(s):  
Ram Ayyala ◽  
Junghyun Jung ◽  
Sergey Knyazev ◽  
SERGHEI MANGUL

Although precise identification of the human leukocyte antigen (HLA) allele is crucial for various clinical and research applications, HLA typing remains challenging due to high polymorphism of the HLA loci. However, with Next-Generation Sequencing (NGS) data becoming widely accessible, many computational tools have been developed to predict HLA types from RNA sequencing (RNA-seq) data. However, there is a lack of comprehensive and systematic benchmarking of RNA-seq HLA callers using large-scale and realist gold standards. In order to address this limitation, we rigorously compared the performance of 12 HLA callers over 50,000 HLA tasks including searching 30 pairwise combinations of HLA callers and reference in over 1,500 samples. In each case, we produced evaluation metrics of accuracy that is the percentage of correctly predicted alleles (two and four-digit resolution) based on six gold standard datasets spanning 650 RNA-seq samples. To determine the influence of the relationship of the read length over the HLA region on prediction quality using each tool, we explored the read length effect by considering read length in the range 37-126 bp, which was available in our gold standard datasets. Moreover, using the Genotype-Tissue Expression (GTEx) v8 data, we carried out evaluation metrics by calculating the concordance of the same HLA type across different tissues from the same individual to evaluate how well the HLA callers can maintain consistent results across various tissues of the same individual. This study offers crucial information for researchers regarding appropriate choices of methods for an HLA analysis.

2018 ◽  
Author(s):  
Xianwen Ren ◽  
Liangtao Zheng ◽  
Zemin Zhang

ABSTRACTClustering is a prevalent analytical means to analyze single cell RNA sequencing data but the rapidly expanding data volume can make this process computational challenging. New methods for both accurate and efficient clustering are of pressing needs. Here we proposed a new clustering framework based on random projection and feature construction for large scale single-cell RNA sequencing data, which greatly improves clustering accuracy, robustness and computational efficacy for various state-of-the-art algorithms benchmarked on multiple real datasets. On a dataset with 68,578 human blood cells, our method reached 20% improvements for clustering accuracy and 50-fold acceleration but only consumed 66% memory usage compared to the widely-used software package SC3. Compared to k-means, the accuracy improvement can reach 3-fold depending on the concrete dataset. An R implementation of the framework is available from https://github.com/Japrin/sscClust.


2018 ◽  
Author(s):  
Koen Van Den Berge ◽  
Katharina Hembach ◽  
Charlotte Soneson ◽  
Simone Tiberi ◽  
Lieven Clement ◽  
...  

Gene expression is the fundamental level at which the result of various genetic and regulatory programs are observable. The measurement of transcriptome-wide gene expression has convincingly switched from microarrays to sequencing in a matter of years. RNA sequencing (RNA-seq) provides a quantitative and open system for profiling transcriptional outcomes on a large scale and therefore facilitates a large diversity of applications, including basic science studies, but also agricultural or clinical situations. In the past 10 years or so, much has been learned about the characteristics of the RNA-seq datasets as well as the performance of the myriad of methods developed. In this review, we give an overall view of the developments in RNA-seq data analysis, including experimental design, with an explicit focus on quantification of gene expression and statistical approaches for differential expression. We also highlight emerging data types, such as single-cell RNA-seq and gene expression profiling using long-read technologies.


2018 ◽  
Author(s):  
Rose Orenbuch ◽  
Ioan Filip ◽  
Devon Comito ◽  
Jeffrey Shaman ◽  
Itsik Pe'er ◽  
...  

Human leukocyte antigen (HLA) locus makes up the major compatibility complex (MHC) and plays a critical role in host response to disease, including cancers and autoimmune disorders. In the clinical setting, HLA typing is necessary for determining tissue compatibility. Recent improvements in the quality and accessibility of next-generation sequencing have made HLA typing from standard short-read data practical. However, this task remains challenging given the high level of polymorphism and homology between the HLA genes. HLA typing from RNA sequencing is further complicated by post-transcriptional splicing and bias due to amplification. Here, we present arcasHLA: a fast and accurate in silico tool that infers HLA genotypes from RNA sequencing data. Our tool outperforms established tools on the gold-standard benchmark dataset for HLA typing in terms of both accuracy and speed, with an accuracy rate of 100% at two field precision for MHC class I genes, and over 99.7% for MHC class II. Importantly, arcasHLA takes as its input pre-aligned BAM files, and outputs three-field resolution for all HLA genes in less than 2 minutes. Finally, we discuss evaluate the performance of our tool on a new biological dataset of 447 single-end total RNA samples from nasopharyngeal swabs, and establish the applicability of arcasHLA in metatranscriptome studies. arcasHLA is available at https://github.com/RabadanLab/arcasHLA.


2019 ◽  
Author(s):  
Justin Sein ◽  
Liam F. Spurr ◽  
Pavlos Bousounis ◽  
N M Prashant ◽  
Hongyu Liu ◽  
...  

SummaryRsQTL is a tool for identification of splicing quantitative trait loci (sQTLs) from RNA-sequencing (RNA-seq) data by correlating the variant allele fraction at expressed SNV loci in the transcriptome (VAFRNA) with the proportion of molecules spanning local exon-exon junctions at loci with differential intron excision (percent spliced in, PSI). We exemplify the method on sets of RNA-seq data from human tissues obtained though the Genotype-Tissue Expression Project (GTEx). RsQTL does not require matched DNA and can identify a subset of expressed sQTL loci. Due to the dynamic nature of VAFRNA, RsQTL is applicable for the assessment of conditional and dynamic variation-splicing relationships.Availability and implementationhttps://github.com/HorvathLab/[email protected] or [email protected] InformationRsQTL_Supplementary_Data.zip


Author(s):  
Koen Van Den Berge ◽  
Katharina Hembach ◽  
Charlotte Soneson ◽  
Simone Tiberi ◽  
Lieven Clement ◽  
...  

Gene expression is the fundamental level at which the result of various genetic and regulatory programs are observable. The measurement of transcriptome-wide gene expression has convincingly switched from microarrays to sequencing in a matter of years. RNA sequencing (RNA-seq) provides a quantitative and open system for profiling transcriptional outcomes on a large scale and therefore facilitates a large diversity of applications, including basic science studies, but also agricultural or clinical situations. In the past 10 years or so, much has been learned about the characteristics of the RNA-seq datasets as well as the performance of the myriad of methods developed. In this review, we give an overall view of the developments in RNA-seq data analysis, including experimental design, with an explicit focus on quantification of gene expression and statistical approaches for differential expression. We also highlight emerging data types, such as single-cell RNA-seq and gene expression profiling using long-read technologies.


2016 ◽  
Author(s):  
Serghei Mangul ◽  
Harry Taegyun Yang ◽  
Nicolas Strauli ◽  
Franziska Gruhl ◽  
Hagit T. Porath ◽  
...  

AbstractHigh throughput RNA sequencing technologies have provided invaluable research opportunities across distinct scientific domains by producing quantitative readouts of the transcriptional activity of both entire cellular populations and single cells. The majority of RNA-Seq analyses begin by mapping each experimentally produced sequence (i.e., read) to a set of annotated reference sequences for the organism of interest. For both biological and technical reasons, a significant fraction of reads remains unmapped. In this work, we develop Read Origin Protocol (ROP) to discover the source of all reads originating from complex RNA molecules, recombinant T and B cell receptors, and microbial communities. We applied ROP to 8,641 samples across 630 individuals from 54 tissues. A fraction of RNA-Seq data (n=86) was obtained in-house; the remaining data was obtained from the Genotype-Tissue Expression (GTEx v6) project. To generalize the reported number of accounted reads, we also performed ROP analysis on thousands of different, randomly selected, and publicly available RNA-Seq samples in the Sequence Read Archive (SRA). Our approach can account for 99.9% of 1 trillion reads of various read length across the merged dataset (n=10641). Using in-house RNA-Seq data, we show that immune profiles of asthmatic individuals are significantly different from the profiles of control individuals, with decreased average per sample T and B cell receptor diversity. We also show that immune diversity is inversely correlated with microbial load. Our results demonstrate the potential of ROP to exploit unmapped reads in order to better understand the functional mechanisms underlying connections between the immune system, microbiome, human gene expression, and disease etiology. ROP is freely available athttps://github.com/smangul1/ropand currently supports human and mouse RNA-Seq reads.


2019 ◽  
Vol 36 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Rose Orenbuch ◽  
Ioan Filip ◽  
Devon Comito ◽  
Jeffrey Shaman ◽  
Itsik Pe’er ◽  
...  

Abstract Motivation The human leukocyte antigen (HLA) locus plays a critical role in tissue compatibility and regulates the host response to many diseases, including cancers and autoimmune di3orders. Recent improvements in the quality and accessibility of next-generation sequencing have made HLA typing from standard short-read data practical. However, this task remains challenging given the high level of polymorphism and homology between HLA genes. HLA typing from RNA sequencing is further complicated by post-transcriptional modifications and bias due to amplification. Results Here, we present arcasHLA: a fast and accurate in silico tool that infers HLA genotypes from RNA-sequencing data. Our tool outperforms established tools on the gold-standard benchmark dataset for HLA typing in terms of both accuracy and speed, with an accuracy rate of 100% at two-field resolution for Class I genes, and over 99.7% for Class II. Furthermore, we evaluate the performance of our tool on a new biological dataset of 447 single-end total RNA samples from nasopharyngeal swabs, and establish the applicability of arcasHLA in metatranscriptome studies. Availability and implementation arcasHLA is available at https://github.com/RabadanLab/arcasHLA. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 2 (1) ◽  
pp. 139-173 ◽  
Author(s):  
Koen Van den Berge ◽  
Katharina M. Hembach ◽  
Charlotte Soneson ◽  
Simone Tiberi ◽  
Lieven Clement ◽  
...  

Gene expression is the fundamental level at which the results of various genetic and regulatory programs are observable. The measurement of transcriptome-wide gene expression has convincingly switched from microarrays to sequencing in a matter of years. RNA sequencing (RNA-seq) provides a quantitative and open system for profiling transcriptional outcomes on a large scale and therefore facilitates a large diversity of applications, including basic science studies, but also agricultural or clinical situations. In the past 10 years or so, much has been learned about the characteristics of the RNA-seq data sets, as well as the performance of the myriad of methods developed. In this review, we give an overview of the developments in RNA-seq data analysis, including experimental design, with an explicit focus on the quantification of gene expression and statistical approachesfor differential expression. We also highlight emerging data types, such as single-cell RNA-seq and gene expression profiling using long-read technologies.


2017 ◽  
Author(s):  
Qingguo Wang ◽  
Joshua Armenia ◽  
Chao Zhang ◽  
Alexander V. Penson ◽  
Ed Reznik ◽  
...  

AbstractDriven by the recent advances of next generation sequencing (NGS) technologies and an urgent need to decode complex human diseases, a multitude of large-scale studies were conducted recently that have resulted in an unprecedented volume of whole transcriptome sequencing (RNA-seq) data. While these data offer new opportunities to identify the mechanisms underlying disease, the comparison of data from different sources poses a great challenge, due to differences in sample and data processing. Here, we present a pipeline that processes and unifies RNA-seq data from different studies, which includes uniform realignment and gene expression quantification as well as batch effect removal. We find that uniform alignment and quantification is not sufficient when combining RNA-seq data from different sources and that the removal of other batch effects is essential to facilitate data comparison. We have processed data from the Genotype Tissue Expression project (GTEx) and The Cancer Genome Atlas (TCGA) and have successfully corrected for study-specific biases, enabling comparative analysis across studies. The normalized data are available for download via GitHub (at https://github.com/mskcc/RNAseqDB).


Author(s):  
Koen Van Den Berge ◽  
Katharina Hembach ◽  
Charlotte Soneson ◽  
Simone Tiberi ◽  
Lieven Clement ◽  
...  

Gene expression is the fundamental level at which the result of various genetic and regulatory programs are observable. The measurement of transcriptome-wide gene expression has convincingly switched from microarrays to sequencing in a matter of years. RNA sequencing (RNA-seq) provides a quantitative and open system for profiling transcriptional outcomes on a large scale and therefore facilitates a large diversity of applications, including basic science studies, but also agricultural or clinical situations. In the past 10 years or so, much has been learned about the characteristics of the RNA-seq datasets as well as the performance of the myriad of methods developed. In this review, we give an overall view of the developments in RNA-seq data analysis, including experimental design, with an explicit focus on quantification of gene expression and statistical approaches for differential expression. We also highlight emerging data types, such as single-cell RNA-seq and gene expression profiling using long-read technologies.


Sign in / Sign up

Export Citation Format

Share Document