scholarly journals The spatio-temporal dynamics of systemic thinking

2019 ◽  
Author(s):  
Gaëlle Vallée-Tourangeau ◽  
Frédéric Vallée-Tourangeau

We argue that a radical departure from the classical information-processing model is untenable because higher-level cognition is fundamentally representation-based. However, we also argue that classical accounts of thinking put too great an emphasis on the role of internal representations and mental processing. Manuscript accepted for publication in Cybernetics & Human Knowing available at https://www.ingentaconnect.com/content/imp/chk/2014/00000021/F0020001/art00009. This article may not exactly replicate the final version published in the journal. It is not the copy of the record.

2018 ◽  
Author(s):  
Gaëlle Vallée-Tourangeau ◽  
Frédéric Vallée-Tourangeau

In this working paper, we review the limitations of the classical information processing model to account for entrepreneurial cognition. We then introduce a different theoretical framework, SysTM, or systemic thinking model, which places agents-environments interactions at the core of cognitive activities. We discuss how this alternative may inform future work on entrepreneurial cognition.


2021 ◽  
Vol 15 (6) ◽  
pp. e0009537
Author(s):  
Laís Picinini Freitas ◽  
Alexandra M. Schmidt ◽  
William Cossich ◽  
Oswaldo Gonçalves Cruz ◽  
Marilia Sá Carvalho

Three key elements are the drivers of Aedes-borne disease: mosquito infestation, virus circulating, and susceptible human population. However, information on these aspects is not easily available in low- and middle-income countries. We analysed data on factors that influence one or more of those elements to study the first chikungunya epidemic in Rio de Janeiro city in 2016. Using spatio-temporal models, under the Bayesian framework, we estimated the association of those factors with chikungunya reported cases by neighbourhood and week. To estimate the minimum temperature effect in a non-linear fashion, we used a transfer function considering an instantaneous effect and propagation of a proportion of such effect to future times. The sociodevelopment index and the proportion of green areas (areas with agriculture, swamps and shoals, tree and shrub cover, and woody-grass cover) were included in the model with time-varying coefficients, allowing us to explore how their associations with the number of cases change throughout the epidemic. There were 13627 chikungunya cases in the study period. The sociodevelopment index presented the strongest association, inversely related to the risk of cases. Such association was more pronounced in the first weeks, indicating that socioeconomically vulnerable neighbourhoods were affected first and hardest by the epidemic. The proportion of green areas effect was null for most weeks. The temperature was directly associated with the risk of chikungunya for most neighbourhoods, with different decaying patterns. The temperature effect persisted longer where the epidemic was concentrated. In such locations, interventions should be designed to be continuous and to work in the long term. We observed that the role of the covariates changes over time. Therefore, time-varying coefficients should be widely incorporated when modelling Aedes-borne diseases. Our model contributed to the understanding of the spatio-temporal dynamics of an urban Aedes-borne disease introduction in a tropical metropolitan city.


2021 ◽  
Vol 376 (1820) ◽  
pp. 20190757 ◽  
Author(s):  
Aurèle Boussard ◽  
Adrian Fessel ◽  
Christina Oettmeier ◽  
Léa Briard ◽  
Hans-Günther Döbereiner ◽  
...  

The slime mould Physarum polycephalum , an aneural organism, uses information from previous experiences to adjust its behaviour, but the mechanisms by which this is accomplished remain unknown. This article examines the possible role of oscillations in learning and memory in slime moulds. Slime moulds share surprising similarities with the network of synaptic connections in animal brains. First, their topology derives from a network of interconnected, vein-like tubes in which signalling molecules are transported. Second, network motility, which generates slime mould behaviour, is driven by distinct oscillations that organize into spatio-temporal wave patterns. Likewise, neural activity in the brain is organized in a variety of oscillations characterized by different frequencies. Interestingly, the oscillating networks of slime moulds are not precursors of nervous systems but, rather, an alternative architecture. Here, we argue that comparable information-processing operations can be realized on different architectures sharing similar oscillatory properties. After describing learning abilities and oscillatory activities of P. polycephalum , we explore the relation between network oscillations and learning, and evaluate the organism's global architecture with respect to information-processing potential. We hypothesize that, as in the brain, modulation of spontaneous oscillations may sustain learning in slime mould. This article is part of the theme issue ‘Basal cognition: conceptual tools and the view from the single cell’.


Author(s):  
Royce Lee ◽  
Jennifer R. Fanning ◽  
Emil F. Coccaro

Aggression can be categorized into three subtypes: premeditated aggression, frustration-related aggression, and impulsive aggression (IA), which is the focus of this chapter. It first delineates the social information processing model of IA and its neurobiological underpinnings, with a special focus on ventral prefrontal-amygdala, frontostriatal, and frontoparietal circuits. In these circuits, structural as well as functional alterations have been associated with IA. A large body of basic and clinical research has examined the role of neurotransmitters (glutamate, GABA) and neuromodulators (monoamines and neuropeptides) in mediating IA. The important role of the monoamines dopamine, serotonin, norepinephrine, and acetylcholine in the mediation of different aspects of IA and the pharmacological potential resulting from these alterations are depicted in the second half of the chapter. The chapter concludes with an overview of the most important etiological factors.


2019 ◽  
Author(s):  
Gaëlle Vallée-Tourangeau ◽  
Frédéric Vallée-Tourangeau

In this chapter, we propose a systemic model of thinking (SysTM) to account for higher cognitive operations such as how an agent makes inferences, solves problems and makes decisions. The SysTM model conceives thinking as a cognitive process that evolves in time and space and results in a new cognitive event (i.e., a new solution to a problem). This presupposes that such cognitive events are emerging from cognitive interactivity, which we define as the meshed network of reciprocal causations between an agent’s mental processing and the transformative actions she applies to her immediate environment to achieve a cognitive result. To explain how cognitive interactivity results in cognitive events, SysTM builds upon the classical information processing model but breaks from the view that cognitive events result from a linear information processing path originating in the perception of a problem stimulus that is mentally processed to produce a cognitive event. Instead, SysTM holds that information processing in thinking evolves through a succession of deductive and inductive processing loops. Both loops give rise to transformative actions on the physical information layout, resulting in new perceptual inputs which inform the next processing loop. Such actions result from the enaction of mental action plans in deductive loops and from unplanned direct perception of action possibilities or affordances in inductive loops. To account for direct perception, we introduce the concept of an affordance pool to refer to a short term memory storage of action possibilities in working memory. We conclude by illustrating how SysTM can be used to derive new predictions and guide the study of cognitive interactivity in thinking.


2017 ◽  
Vol 39 (5) ◽  
pp. 886-900 ◽  
Author(s):  
Şefik Evren Erdener ◽  
Jianbo Tang ◽  
Amir Sajjadi ◽  
Kıvılcım Kılıç ◽  
Sreekanth Kura ◽  
...  

Optical coherence tomography (OCT) allows label-free imaging of red blood cell (RBC) flux within capillaries with high spatio-temporal resolution. In this study, we utilized time-series OCT-angiography to demonstrate interruptions in capillary RBC flux in mouse brain in vivo. We noticed ∼7.5% of ∼200 capillaries had at least one stall in awake mice with chronic windows during a 9-min recording. At any instant, ∼0.45% of capillaries were stalled. Average stall duration was ∼15 s but could last over 1 min. Stalls were more frequent and longer lasting in acute window preparations. Further, isoflurane anesthesia in chronic preparations caused an increase in the number of stalls. In repeated imaging, the same segments had a tendency to stall again over a period of one month. In awake animals, functional stimulation decreased the observance of stalling events. Stalling segments were located distally, away from the first couple of arteriolar-side capillary branches and their average RBC and plasma velocities were lower than nonstalling capillaries within the same region. This first systematic analysis of capillary RBC stalls in the brain, enabled by rapid and continuous volumetric imaging of capillaries with OCT-angiography, will lead to future investigations of the potential role of stalling events in cerebral pathologies.


2020 ◽  
Author(s):  
Mehrshad Golesorkhi ◽  
Shankar Tumati ◽  
Javier Gomez-Pilar ◽  
Emmanuel Stamatakis ◽  
Georg Northoff

Abstract Unlike the brain’s faster frequencies, the exact role of its more powerful infraslow frequencies (ISF, 0.01 – 0.1Hz) in information processing remains poorly understood. Do and how ISF process information? We investigate information processing and related temporal dynamics of ISF in resting and task state fMRI. To quantify information, we apply the Lempel-Ziv complexity (LZC), a measure of signal compression indexing information. The LZC is combined with direct measurement of the dynamics of ISF themselves, namely their power spectral density by median frequency (MF). We demonstrate the following: (I) topographical differences in resting state between higher- and lower-order networks, showing statistically lower LZC in the former; (II) task-related changes in LZC; (III) modulation of LZC associated with MF changes, with low and high MF resting-state values correlated with different degrees of LZC change. In sum, we provide evidence that ISF carry and process information as mediated through their temporal dynamics.


Sign in / Sign up

Export Citation Format

Share Document