scholarly journals Quantum cloud theory: Collapse expectations and superposition conservation

2021 ◽  
Author(s):  
Wenjing Qu

Most of metabolic processes are extremely complicated but occur spontaneously and steadily, the essential reason of which may be either a thermodynamic problem or related to some quantum properties. Here, collapse selection is interpreted with an analytical model of energy transfer, from which the concept of quantum cloud is defined as that during undetectable changes of a group of particles between its effective changes, particles are in the superposition of various energy states and the group is named as a cloud. It is deduced from a conservation notion of matter proportions that active cloud collapses have least-time expectation while passive collapses have matter-proportion expectation. As the results, quantum Zeno effect is a typical phenomenon of passive collapses while anti-Zeno effect is typical active collapses; moreover, the phenomenon of dark matter may be dark-cloud effect of normal matter while the phenomenon of accelerating universe may be induced by the luminescent asymmetries of bright celestial bodies.

Author(s):  
Geoff Cottrell

Matter: A Very Short Introduction explains matter—the stuff of which your body and the universe is made—from elementary particles, to atoms, humans, planets, up to the superclusters of galaxies. Familiar solids, liquids, and gases are described, as well as plasmas, exotic forms of quantum matter, and antimatter. This VSI outlines the quantum properties of atoms, the fundamental forces of nature, and how the different forms of matter arise. The origins of matter are traced to the Big Bang, 13.8 billion years ago. However, all the familiar normal matter constitutes only 5% of the matter that exists. The remainder comes in two mysterious forms: dark matter and dark energy, which are discussed.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Wenlin Li ◽  
Najmeh Es'haqi-Sani ◽  
Wen-Zhao Zhang ◽  
David Vitali

2001 ◽  
Vol 91 (4) ◽  
pp. 501-507 ◽  
Author(s):  
J. Řeháček ◽  
J. Peřina ◽  
P. Facchi ◽  
S. Pascazio ◽  
L. Mišta

2012 ◽  
Vol 21 (11) ◽  
pp. 1242002 ◽  
Author(s):  
PRITI MISHRA ◽  
TEJINDER P. SINGH

Flat galaxy rotation curves and the accelerating Universe both imply the existence of a critical acceleration, which is of the same order of magnitude in both the cases, in spite of the galactic and cosmic length scales being vastly different. Yet, it is customary to explain galactic acceleration by invoking gravitationally bound dark matter, and cosmic acceleration by invoking a "repulsive" dark energy. Instead, might it not be the case that the flatness of rotation curves and the acceleration of the Universe have a common cause? In this essay we propose a modified theory of gravity. By applying the theory on galactic scales we demonstrate flat rotation curves without dark matter, and by applying it on cosmological scales we demonstrate cosmic acceleration without dark energy.


1996 ◽  
Vol 217 (4-5) ◽  
pp. 203-208 ◽  
Author(s):  
Hiromichi Nakazato ◽  
Mikio Namiki ◽  
Saverio Pascazio ◽  
Helmut Rauch

2021 ◽  
Author(s):  
Saurabh U. Shringarpure ◽  
James D. Franson

Sign in / Sign up

Export Citation Format

Share Document