scholarly journals Sensory Recruitment in Visual Short-Term Memory: A Systematic Review and Meta-Analysis of Sensory Visual Cortex Interference Using Transcranial Magnetic Stimulation

2021 ◽  
Author(s):  
Phivos Phylactou ◽  
Artemis Traikapi ◽  
Marietta Papadatou-Pastou ◽  
Nikos Konstantinou

Visual short-term memory (VSTM) links perception with higher cognitive processes by maintaining visual information that is absent from the environment. Yet, it remains unclear if sensory visual cortex is a necessary component of the brain network that underlies short-term maintenance of visual information. Previous reviews remain inconclusive and open to interpretation. Here, we aimed to systematically identify and review studies that have investigated the role of the sensory visual cortex in VSTM using transcranial magnetic stimulation (TMS), a method that allows exploration of causal relationships, and to quantitatively explore the effect of TMS interference on the sensory visual cortex during VSTM using meta-analytic methodology. Thirteen studies were identified and qualitatively reviewed. Out of those, seven studies provided sufficient statistical data for meta-analysis and yielded a total of 30 effect sizes, which were included in the meta-analyses. Two meta-analyses were conducted, one regarding the encoding phase of VSTM (19 effect sizes), and one regarding the maintenance phase of VSTM (11 effect sizes). The results from the systematic review and the two meta-analyses indicate that the sensory visual cortex is likely involved in both the encoding and maintenance phase of VSTM. In some cases, evidence did not show significant effects of TMS, however, this is suggested to be due to low memory load or low perceptual task demands. Overall, these findings support the idea that sensory visual areas are part of the brain network responsible for successfully maintaining information in short-term memory when no physical stimulus is present in the environment.

2021 ◽  
Author(s):  
Phivos Phylactou ◽  
Artemis Traikapi ◽  
Marietta Papadatou-Pastou ◽  
Nikos Konstantinou

Visual short-term memory (VSTM) links perception with higher cognitive processes by maintaining visual information that is absent from the environment. Yet, it remains unclear if sensory visual cortex is a necessary component of the brain network that underlies short-term maintenance of visual information. Previous reviews remain inconclusive and open to interpretation. Here, we aimed to systematically identify and review studies that have investigated the role of the sensory visual cortex in VSTM using transcranial magnetic stimulation (TMS), a method that allows exploration of causal relationships, and to quantitatively explore the effect of TMS interference on the sensory visual cortex during VSTM using meta-analytic methodology. Thirteen studies were identified and qualitatively reviewed. Out of those, seven studies provided sufficient statistical data for meta-analysis and yielded a total of 30 effect sizes, which were included in the meta-analyses. Two meta-analyses were conducted, one regarding the encoding phase of VSTM (19 effect sizes), and one regarding the maintenance phase of VSTM (11 effect sizes). The results from the systematic review and the two meta-analyses indicate that the sensory visual cortex is likely involved in both the encoding and maintenance phase of VSTM. In some cases, evidence did not show significant effects of TMS, however, this is suggested to be due to low memory load or low perceptual task demands. Overall, these findings support the idea that sensory visual areas are part of the brain network responsible for successfully maintaining information in short-term memory when no physical stimulus is present in the environment.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Milos Antonijevic ◽  
Miodrag Zivkovic ◽  
Sladjana Arsic ◽  
Aleksandar Jevremovic

Visual short-term memory (VSTM) is defined as the ability to remember a small amount of visual information, such as colors and shapes, during a short period of time. VSTM is a part of short-term memory, which can hold information up to 30 seconds. In this paper, we present the results of research where we classified the data gathered by using an electroencephalogram (EEG) during a VSTM experiment. The experiment was performed with 12 participants that were required to remember as many details as possible from the two images, displayed for 1 minute. The first assessment was done in an isolated environment, while the second assessment was done in front of the other participants, in order to increase the stress of the examinee. The classification of the EEG data was done by using four algorithms: Naive Bayes, support vector, KNN, and random forest. The results obtained show that AI-based classification could be successfully used in the proposed way, since we were able to correctly classify the order of the images presented 90.12% of the time and type of the displayed image 90.51% of the time.


2020 ◽  
Vol 117 (51) ◽  
pp. 32329-32339
Author(s):  
Jing Liu ◽  
Hui Zhang ◽  
Tao Yu ◽  
Duanyu Ni ◽  
Liankun Ren ◽  
...  

Visual short-term memory (VSTM) enables humans to form a stable and coherent representation of the external world. However, the nature and temporal dynamics of the neural representations in VSTM that support this stability are barely understood. Here we combined human intracranial electroencephalography (iEEG) recordings with analyses using deep neural networks and semantic models to probe the representational format and temporal dynamics of information in VSTM. We found clear evidence that VSTM maintenance occurred in two distinct representational formats which originated from different encoding periods. The first format derived from an early encoding period (250 to 770 ms) corresponded to higher-order visual representations. The second format originated from a late encoding period (1,000 to 1,980 ms) and contained abstract semantic representations. These representational formats were overall stable during maintenance, with no consistent transformation across time. Nevertheless, maintenance of both representational formats showed substantial arrhythmic fluctuations, i.e., waxing and waning in irregular intervals. The increases of the maintained representational formats were specific to the phases of hippocampal low-frequency activity. Our results demonstrate that human VSTM simultaneously maintains representations at different levels of processing, from higher-order visual information to abstract semantic representations, which are stably maintained via coupling to hippocampal low-frequency activity.


Neuron ◽  
2009 ◽  
Vol 61 (5) ◽  
pp. 801-809 ◽  
Author(s):  
Philip O'Herron ◽  
Rüdiger von der Heydt

2013 ◽  
Vol 25 (11) ◽  
pp. 1944-1956 ◽  
Author(s):  
Markus H. Sneve ◽  
Svein Magnussen ◽  
Dag Alnæs ◽  
Tor Endestad ◽  
Mark D'Esposito

Visual STM of simple features is achieved through interactions between retinotopic visual cortex and a set of frontal and parietal regions. In the present fMRI study, we investigated effective connectivity between central nodes in this network during the different task epochs of a modified delayed orientation discrimination task. Our univariate analyses demonstrate that the inferior frontal junction (IFJ) is preferentially involved in memory encoding, whereas activity in the putative FEFs and anterior intraparietal sulcus (aIPS) remains elevated throughout periods of memory maintenance. We have earlier reported, using the same task, that areas in visual cortex sustain information about task-relevant stimulus properties during delay intervals [Sneve, M. H., Alnæs, D., Endestad, T., Greenlee, M. W., & Magnussen, S. Visual short-term memory: Activity supporting encoding and maintenance in retinotopic visual cortex. Neuroimage, 63, 166–178, 2012]. To elucidate the temporal dynamics of the IFJ-FEF-aIPS-visual cortex network during memory operations, we estimated Granger causality effects between these regions with fMRI data representing memory encoding/maintenance as well as during memory retrieval. We also investigated a set of control conditions involving active processing of stimuli not associated with a memory task and passive viewing. In line with the developing understanding of IFJ as a region critical for control processes with a possible initiating role in visual STM operations, we observed influence from IFJ to FEF and aIPS during memory encoding. Furthermore, FEF predicted activity in a set of higher-order visual areas during memory retrieval, a finding consistent with its suggested role in top–down biasing of sensory cortex.


1968 ◽  
Vol 27 (3_suppl) ◽  
pp. 1155-1158 ◽  
Author(s):  
Daniel N. Robinson

Ss were exposed to discontinuously presented signals in a compensatory tracking task. Signals were “on” for durations of 16.7, 50, 150, 300, or 500 msec. followed by “off” periods of the same durations. From measures of tracking accuracy under the various on-off combinations, the following conclusions emerge: (a) most of the utilizable visual information is present in the first 15 to 50 msec.; (b) the short-term storage capacity, i.e., the temporal range over which the system can “coast” without input, extends to at least 300 msec.; (c) measures taken under stimulating conditions of long duration and time-varying characteristics result in different assessments of visual short-term memory than those obtained under two-flash (transient response) conditions.


Sign in / Sign up

Export Citation Format

Share Document